Skip to main content
Log in

Photodegradation process of Eosin Y using ZnO/SnO2 nanocomposites as photocatalysts: experimental study and neural network modeling

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of coupled ZnO/SnO2 nanocomposites were prepared with different molar ratios (1:10, 1:2, 2:1, and 10:1), using a homogeneous co-precipitation method. The structural properties were evaluated by different techniques: XRD, UVDR, SEM, N2 adsorption, and IR. The photocatalytic activity of the samples was tested with the main goal of Eosin Y degradation from wastewaters. The prepared nanocomposites/systems exhibit higher photocatalytic activity than a single semiconductor photocatalyst and ZnO can effectively improve the photocatalytic efficiency of SnO2 under UV illumination. A direct neural network modeling methodology, based on feed-forward neural networks, was performed in order to evaluate the efficiency of the photodegradation process of Eosin Y, depending of the reaction conditions. The developed model considered the following parameters with significant influence on the approached process: crystallite size, surface area, absorbtion edge, TOC values, time of reaction, and catalyst concentration as inputs and the final dye concentration as output. Accurate results were obtained in the validation phase of the neural model: relative average error under 4 % and a correlation between experimental and simulation data of 0.999.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chakrabarti S, Dutta BK (2004) J Hazard Mater B112:269

    Article  Google Scholar 

  2. Hoffmann MR, Martin ST, Choi W, Bahenemann DW (1995) Chem Rev 95:69

    Article  CAS  Google Scholar 

  3. Tang WZ, Huren An (1995) Chemosphere 31:4157

    Article  CAS  Google Scholar 

  4. Sakthivel S, Neppolian B, Palanichamy M, Arabindoo B, Murugesan V (1999) Indian J Chem Technol 6:161

    CAS  Google Scholar 

  5. Yang J, Li D, Wang X, Yang XJ, Lu LDJ (2002) Solid State Chem 165:193

    Article  CAS  Google Scholar 

  6. Shi LY, Li CZ, Gu HC, Fang DY (2000) Mater Chem Phys 62:62

    Article  CAS  Google Scholar 

  7. Marci G, Augugliaro V, Lopez-Munoz MJ, Martin C, Palmisano L, Rives V, Schiavello M, Tilley RJD, Venezia AM (2001) J Phys Chem B 105:1033

    Article  CAS  Google Scholar 

  8. Bandara J, Tennakone K, Jayatilaka PPB (2002) Chemosphere 49:439

    Article  CAS  Google Scholar 

  9. Zhang M, An T, Hu X, Wang C, Sheng G, Fu J (2004) Appl Catal A 260:215

    Article  CAS  Google Scholar 

  10. Zhang F, Zhao J, Shen T, Hidaka H, Pelizzetti E, Serpone N (1998) Appl Catal B 15:147

    Article  Google Scholar 

  11. Herrmann JM (2005) Top Catal 34:49

    Article  CAS  Google Scholar 

  12. Rehman S, Ullah R, Butt AM, Gohar ND (2009) J Hazard Mater 170:560

    Article  CAS  Google Scholar 

  13. Wang C, Zhao J, Wang X, Mai B, Sheng C, Peng P, Fu J (2002) Appl Catal B 39:269

    Article  CAS  Google Scholar 

  14. Seftel EM, Popovici E, Mertens M, Stefaniak EA, Van Grieken R, Cool P, Vansant EF (2008) Appl Catal B 84:699

    Article  CAS  Google Scholar 

  15. Suditu GD, Secula M, Piuleac CG, Curteanu S, Poulios I (2008) Rev Chim 7:816

    Google Scholar 

  16. Piuleac CG, Poulios I, Leon F, Curteanu S, Kouras A (2010) Sep Sci Technol 45:1644

    Article  CAS  Google Scholar 

  17. Caliman FA, Curteanu S, Betianu C, Gavrilescu M, Poulios I (2008) J Adv Oxid Technol (ACS) 11:316

    CAS  Google Scholar 

  18. Monteagudo JM, Durán A, Aguirre M, San Martín I (2011) J Hazard Mater 185:131

    Article  CAS  Google Scholar 

  19. Wang C, Wang X, Xu BQ, Zhao J, Mai B, Peng P, Sheng G, Fu JJ (2004) Photochem Photobiol A 168:47

    Article  CAS  Google Scholar 

  20. Piuleac CG, Rodrigo MA, Canizares P, Curteanu S, Saez C (2010) Environ Model Soft 25:74

    Article  Google Scholar 

  21. Piuleac CG, Poulios I, Curteanu S (2009) Environ Eng Manag J 8:439

    CAS  Google Scholar 

  22. Benardos PG, Vosniakos GC (2007) Eng Appl Artif Intell 20:365

    Article  Google Scholar 

  23. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  24. Provenzano PL, Jindal GR, Sweet JR, White WB (2001) J Lumin 92:297

    Article  CAS  Google Scholar 

  25. Tipson RS, Horton D (1986) Advances in carbohydrate chemistry and biochemistry, vol 44. Academic Press Inc., London

    Google Scholar 

  26. Hong RY, Li JH, Chen LL, Liu DQ, Li HZ, Ding J (2009) Power Technol 189:426

    Article  CAS  Google Scholar 

  27. Majumder S, Hussain S, Das SN, Bhar RB, Pal AK (2008) Vacuum 82:760

    Article  CAS  Google Scholar 

  28. Ahmed J, Vaidya S, Ahmad T, Sujatha Devi P, Das D, Ganguli A (2008) Mater Res Bull 43:264

    Article  CAS  Google Scholar 

  29. Mihaiu S, Al Toader, Mocioiu O, Voicescu M, Plugaru R, Zaharescu M (2008) Phase Formation in the SnO2–ZnO binary System, 2nd International Congress on Ceramics 29th June–4th July 2008. Verona, Italy

    Google Scholar 

  30. Khodja AA, Sehili T, Pilichowski JF, Boule P (2001) J Photochem Photobiol Part A 141:231

    Article  CAS  Google Scholar 

  31. Xu YH, Chen HR, Zeng ZX, Lei B (2006) Appl Surf Sci 252:8565

    Article  CAS  Google Scholar 

  32. Zheng L, Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J (2009) Inorg Chem 48:1819

    Article  CAS  Google Scholar 

  33. Hunter A, Kennedy L, Henry J, Ferguson I (2000) Comput Methods and Programs Biomed 62:11

    Article  CAS  Google Scholar 

  34. Gevrey M, Domopoulos I, Lek S (2003) Ecol Model 160:249

    Article  Google Scholar 

  35. Yayavaram S, Ahuja G (2008) Admin Sci Q 53:333

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the project PERFORM-ERA “Post-doctoral Performance for Integration in the European Research Area” (ID-57649), financed by the European Social Fund and the Romanian Government and by the “Partnership in priority areas—PN-II” program, financed by ANCS, CNDI—UEFISCDI, project PN-II-PT-PCCA-2011-3.2-0732, No. 23/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Curteanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanasa, D.E., Piuleac, C.G., Curteanu, S. et al. Photodegradation process of Eosin Y using ZnO/SnO2 nanocomposites as photocatalysts: experimental study and neural network modeling. J Mater Sci 48, 8029–8040 (2013). https://doi.org/10.1007/s10853-013-7617-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7617-x

Keywords

Navigation