Skip to main content
Log in

Photocatalytic Degradation of Industrial Dye in Semi-Pilot Scale Prototype Solar Photoreactor: Optimization and Modeling Using ANN and RSM Based on Box–Wilson Approach

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Photodegradation of an industrial Azo dye C.I Basic Red 46, was examined in a semi-pilot scale prototype solar photoreactor under solar radiation. In our study, photodegradation of the dye was optimized using Response Surface Methodology (RSM) based on Box-Wilson approach. The Artificial Neural Network (ANN) was used to establish suitable modeling and optimal conditions for the Solar UV/Immobilized-TiO2 process in order to evaluate the individual effects of three factors that independently affect the effectiveness of the photodegradation process: (1) initial concentration of the dye, (2) pH, and (3) flow rate. The RSM was in good agreement with the prediction model (R2Dec = 0.95); meanwhile, the ANN approach revealed that the predicated model fit perfectly with the experimental data to yield the highest value of R2 = 0.999. The effects of these three factors could be estimated from a second-order polynomial equation, and the optimal parameters of photodegradation consisted of three main parameters: (1) initial concentration of colorant 10.65 mg.L−1, (2) pH 10.82, and (3) rate of fluid flow of 852 L h−1. The decolorization removal efficiency under these optimal conditions was 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lelli B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnolo Res Innov 3(2):275–290

    Article  Google Scholar 

  2. Sillanpää M, Ncibi MC, Matilainen A (2018) Advanced oxidation processes for the removal of natural organic matter from drinking water sources: a comprehensive review. J Env Manag 208:56–76

    Article  Google Scholar 

  3. DEPA (Danish Environmental Protection Agency) (2000) Survey of azo-colorants in Denmark, Toxicity and fate of azo dyes, Danish Technological Institute, Environment. DEPA (Danish Environmental Protection Agency), Copenhagen

    Google Scholar 

  4. Opie J, Adriene L, Kathryn F, John F, Rosemary N (2004) Foot dermatitis caused by the textile dye Basic Red 46 in acrylic blend socks. Contact Dermatitis 49:297–303

    Article  Google Scholar 

  5. González-Casamachin DA, De la Rosa JR, Lucio-Ortiz CJ, De Rio DADH, Martínez-Vargas DX, Flores-Escamilla GA, Moctezuma-Velazquez E (2019) Visible-light photocatalytic degradation of acid violet 7 dye in a continuous annular reactor using ZnO/PPy photocatalyst: synthesis, characterization, mass transfer effect evaluation and kinetic analysis. Chem Eng J 373:325–337

    Article  Google Scholar 

  6. Isimjan TT, Trifkovic M, Abdullahi I, Rohani S, Ray AK (2015) Nanoscale optimization and statistical modeling of photoelectrochemical water splitting efficiency of N-doped TiO2 nanotubes. Top Cata 58(2–3):114–122

    Article  CAS  Google Scholar 

  7. Da Silva CG, Faria JL (2003) Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. J Photochem Photobiol A Chem 155:133–143

    Article  Google Scholar 

  8. Li W, Jain T, Ishida K, Liu H (2017) A mechanistic understanding of the degradation of trace organic contaminants by UV/hydrogen peroxide, UV/persulfate and UV/free chlorine for water reuse Environmental Science. Wat Res Technol 3(1):128–138

    CAS  Google Scholar 

  9. Glover JD, Hartley AC, Windmiller RA, Nelsen NS, Boyd JE (2018) An overview of solar photocatalytic reactor designs and their broader impact on the environment visible light-active photocatalysis: nanostructured catalyst design. Mech Appl. https://doi.org/10.1002/9783527808175.ch20

    Article  Google Scholar 

  10. Spasiano D, Marotta R, Malato S, Fernandez-Ibanez P, Di Somma I (2015) Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications A comprehensive approach. App Catal B: Environ 170:90–123

    Article  Google Scholar 

  11. McCullagh R, Peter KJ, Adams M, Pollard PM, Abdurrahman M (2010) Development of a slurry continuous flow reactor for photocatalytic treatment of industrial waste water. J Photochem Photobiol A Chem 211:42–46

    Article  CAS  Google Scholar 

  12. Buechler KJ, Nam CH, Zawistowski TM, Noble RD, Koval CA (1999) Design and evaluation of a novel controlled periodic illumination reactor to study photocatalysis. Ind Eng Chem Res 38:1258–1263

    Article  CAS  Google Scholar 

  13. Sacco O, Sannino D, Vaiano V (2019) Packed bed photoreactor for the removal of water pollutants using visible light emitting diodes. App Sci 9(3):472

    Article  CAS  Google Scholar 

  14. Montalvo-Romero C, Aguilar-Ucán C, Ramirez-Elias M, Cordova-Quiroz V (2018) A semi-pilot photocatalytic rotating reactor (RFR) with supported TiO2/Ag catalysts for water treatment. Molecules 23(1):224

    Article  Google Scholar 

  15. Bouchareb MK, Bouhelassa M, Berkani M (2014) Optimization of photocatalytic decolorization of CI Basic Blue 41 in semi-pilot scale prototype solar photoreactor. J ChemTechnol Biotechnol 89:1211–1218

    Article  CAS  Google Scholar 

  16. Berkani M, Bouhelassa M, Bouchareb MK (2019) Implementation of a venturi photocatalytic reactor: optimization of photodecolorization of an industrial azo dye. Ara J Chem 12(8):3054–3063

    Article  CAS  Google Scholar 

  17. Chen LC (2000) Effects of factors and interacted factors on the optimal decolorization process of methyl orange by ozone. Wat Res 34:974–982

    Article  CAS  Google Scholar 

  18. Oppenlander T (2003) Photochemical Purification of Water and Air. Wiley, Weinheim

    Google Scholar 

  19. Radha KV, Sirisha K (2018) Electrochemical oxidation processes. Advanced oxidation processes for waste water treatment. Academic Press, Cambridge, pp 359–373

    Chapter  Google Scholar 

  20. Balkin SD, Lin DK (2000) A neural network approach to response surface methodology communications in statistics. Theor Methods 29(9–10):2215–2227

    Article  Google Scholar 

  21. Elmolla ES, Malay C (2011) The use of artificial neural network (ANN) for modelling, simulation and prediction of advanced oxidation process performance in recalcitrant wastewater treatment. Artif Neural Netw Appl. https://doi.org/10.5772/14920

    Article  Google Scholar 

  22. Strik DP, Domnanovich AM, Zani L, Braun R, Holubar P (2005) Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB Neural Network Toolbox. Environ Modell Softw 20(6):803–810

    Article  Google Scholar 

  23. Azadi S, Karimi-Jashni A, Javadpour S (2018) Modeling and optimization of photocatalytic treatment of landfill leachate using tungsten-doped TiO2 nano-photocatalysts: application of artificial neural network and genetic algorithm. Process Saf Environ Prot 117:267–277

    Article  CAS  Google Scholar 

  24. Dhiman N, Singh A, Verma NK, Ajaria N, Patnaik S (2017) Statistical optimization and artificial neural network modeling for acridine orange dye degradation using in-situ synthesized polymer capped ZnO nanoparticles. J Colloid Interface Sci 493:295–306

    Article  CAS  Google Scholar 

  25. Khataee A, Fathinia M, Zarei M, Izadkhah B, Joo S (2014) Modeling and optimization of photocatalytic/photoassisted-electro-Fenton like degradation of phenol using a neural network coupled with genetic algorithm. J Ind Eng Chem 20(4):1852–1860

    Article  CAS  Google Scholar 

  26. Ayodele BV, Alsaffar MA, Mustapa SI, Vo DVN (2020) Backpropagation neural networks modelling of photocatalytic degradation of organic pollutants using TiO2-based photocatalysts. J ChemTechnolo Biotechnolo. https://doi.org/10.1002/jctb6407

    Article  Google Scholar 

  27. Talwar S, Verma AK, Sangal VK (2019) Modeling and optimization of fixed mode dual effect (photocatalysis and photo-Fenton) assisted Metronidazole degradation using ANN coupled with genetic algorithm. J Environ Manag 250:109428

    Article  CAS  Google Scholar 

  28. Khataee AR, Fathinia M, Aber S, Zarei M (2010) Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: intermediates identification. J Hazard Mater 181(1–3):886–897

    Article  CAS  Google Scholar 

  29. Ko S (2008) Zeolite-based nanosized TiO2 photocatalytic paper for antimicrobial barrier and toxin passivation in packaging: design, synthesis and characterization. Dessertation. Western Michigan University, Kalamazoo

    Google Scholar 

  30. Liu HL, Chiou YR (2005) Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology. Chem EngJ 112:173–179

    Article  CAS  Google Scholar 

  31. Jasso-Salcedo AB, Hoppe S, Pla F, Escobar-Barrios VA, Camargo M, Meimaroglou D (2017) Modeling and optimization of a photocatalytic process: degradation of endocrine disruptor compounds by Ag/ZnO. Chem Eng Res Des 128:174–191

    Article  CAS  Google Scholar 

  32. Kesraoui-Abdessalem A, Oturan N, Bellakhal N, Dachraoui M, Oturan MA (2008) Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Appl Catal B 78:334–341

    Article  Google Scholar 

  33. Berkani M, Bouhelassa M, Bouzaza A, Bouchareb MK, Kadmi Y, Soutrelle I (2015) Optimization of photocatalytic decolourization of cationic Azo Dye in thin film fixed bed photoreactor. Chem Eng. https://doi.org/10.3303/CET1543161

    Article  Google Scholar 

  34. Rabahi A, Hauchard D, Arris S, Berkani M, Achouri O, Meniai AH, Bencheikh-Lehocine M (2018) Leachate effluent COD removal using electrocoagulation A response surface methodology (RSM) optimization and modelling. Desalin Wat Treat 114:1–12

    Article  Google Scholar 

  35. Dijkstraa MFJ, Pannemana HJ, Winkelmana JGM, Kellyb JJ, Beenackers AACM (2002) Modeling the photocatalytic degradation of formic acid in a reactor with immobilized catalyst. Chem Eng Sci 57:4895–4907

    Article  Google Scholar 

  36. Hir ZAM, Moradihamedani P, Abdullah AH, Mohamed MA (2017) MA Immobilization of TiO2 into polyethersulfone matrix as hybrid film photocatalyst for effective degradation of methyl orange dye. Mat Sci Semicon Proc 57:157–165

    Article  CAS  Google Scholar 

  37. Danion A, Bordes C, Disdier J, Gauvrit J-Y, Guillard C, Lantéri P, Jafrezic-Renault N (2004) Optimization of a single TiO2-coated optical fber reactor using experimental design. J Photochem Photobiol A 168(3):161–167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Berkani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkani, M., Bouchareb, M.K., Bouhelassa, M. et al. Photocatalytic Degradation of Industrial Dye in Semi-Pilot Scale Prototype Solar Photoreactor: Optimization and Modeling Using ANN and RSM Based on Box–Wilson Approach. Top Catal 63, 964–975 (2020). https://doi.org/10.1007/s11244-020-01320-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01320-0

Keywords

Navigation