Skip to main content

Advertisement

Log in

Reduced graphene oxide/CoSe2 nanocomposites: hydrothermal synthesis and their enhanced electrocatalytic activity

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (RGO)/CoSe2 nanocomposites were synthesized by self-assembly of CoSe2/DETA (DETA: diethylenetriamine) onto the surface of graphene oxide (GO), followed by subsequent chemical reduction of GO during a hydrothermal process. The as-synthesized products were characterized by powder X-ray diffraction, energy dispersive X-ray spectroscopy, Raman spectra, scanning electron microscopy, and transmission electron microscopy. The morphology of the CoSe2 on the RGO nanosheets can be well controlled by adjusting the reaction time during the hydrothermal process. The catalytic activities of the RGO/CoSe2 nanocomposites were investigated for oxygen evolution reaction (OER) in alkaline conditions. It was found that the as-formed RGO/CoSe2 nanocomposites show higher catalytic activity compared with the unsupported CoSe2. In addition, the loading amounts and morphologies of CoSe2 on RGO sheets have a great influence on the catalytic performance of RGO/CoSe2. Our studies raise promising possibilities for designing effective OER electrocatalysts for energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) ChemCatChem 2:724

    Article  CAS  Google Scholar 

  2. Trasatti S (1984) Electrochim Acta 29:1503

    Article  CAS  Google Scholar 

  3. Trasatti S (1991) Electrochim Acta 36:225

    Article  CAS  Google Scholar 

  4. Matsumoto Y, Sato E, Mater E (1986) Chem Phys 14:397

    CAS  Google Scholar 

  5. Hamdani M, Singh RN, Chartier P (2010) Int J Electrochem Sci 5:556

    CAS  Google Scholar 

  6. Pinaud BA, Chen Z, Abram DN, Jaramillo TF (2011) J Phys Chem C 115:11830

    Article  CAS  Google Scholar 

  7. Celorrio V, Yemha MDO, Plana MG, Moliner D, Fermin R (2012) Int J Hydrogen Energy 37(8):7152

    Article  CAS  Google Scholar 

  8. Kundu S, Nagaiah TC et al (2012) Carbon 50(12):4534

    Article  CAS  Google Scholar 

  9. Li XL et al (2010) ACS Nano 4(4):3206

    Google Scholar 

  10. Novoselov S, Geim AK, Morozov SV, Jiang D, ZhangY D, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  11. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Carbon 39:507

    Article  CAS  Google Scholar 

  12. Oh JS, Luong ND, Hwang TS, Hong JP, Lee YK, Nam JD (2013) J Mater Sci 48:1127. doi:10.1007/s10853-012-6848-6

    Article  CAS  Google Scholar 

  13. Jiang BJ, Tian CG, Song G, Chang W, Wang GF, Wu Q, Fu HG (2013) J Mater Sci 48:1980. doi:10.1007/s10853-012-6964-3

    Article  CAS  Google Scholar 

  14. Ji ZY, Zhu GX, Shen XP, Zhou H, Wu CM, Wang M (2012) New J Chem 36:1774

    Article  CAS  Google Scholar 

  15. Qian Y, Lu SB, Gao FL (2011) J Mater Sci 46:3517. doi:10.1007/s10853-011-5260-y

    Article  CAS  Google Scholar 

  16. Chen XD, Xu H, Wang XW, Huang YX, Mary B-P, Zhang H, Wang LH, Huang, Chen P (2012) ACS Nano 6(4):3206

    Article  Google Scholar 

  17. Ji ZY, Wu JL, Shen XP, Zhou H, Xi HT (2011) J Mater Sci 46:1190. doi:10.1007/s10853-010-4892-7

    Article  CAS  Google Scholar 

  18. Wang B et al (2012) J Mater Chem 22:15750

    Article  CAS  Google Scholar 

  19. Chen P, Xiao TY, Li HH, Yang JJ, Wang Z, Yao HB, Yu SH (2012) ACS Nano 6(1):712

    Article  CAS  Google Scholar 

  20. Hsu FC, Luo JY, Yeh KW, Chen TK, Huang TW, Wu PM, Lee YC, Huang YL, Chu YY, Yan DC, Wu MK (2008) Proc Natl Acad Sci USA 105:14262

    Article  CAS  Google Scholar 

  21. Kwon SK, Youn SJ, Min BI (2000) Phys Rev B 62:357

    Article  CAS  Google Scholar 

  22. Xie WH, Xu YQ, Liu BG, Pettifor DG (2003) Phys Rev Lett 91:037204

    Article  Google Scholar 

  23. Gao MR, Xu YF, Jiang J, Zheng YD, Yu SH (2012) J Am Chem Soc 134:2930

    Article  CAS  Google Scholar 

  24. Feng YJ, He T, Vantea NA (2009) Electrochim Acta 54:5252

    Article  CAS  Google Scholar 

  25. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  26. Ji ZY, Shen XP, Zhu GX, Zhou H, Yuan AH (2012) J Mater Chem 22:3471

    Article  CAS  Google Scholar 

  27. Gao MR, Yao WT, Yao HB, Yu SH (2009) J Am Chem Soc 131:7486

    Article  CAS  Google Scholar 

  28. Ji ZY, Shen XP, Li MZ, Zhou H, Zhu GX, Chen KM (2013) Nanotechnology 24:115603

    Article  Google Scholar 

  29. Zhu CZ, Guo SJ, Fang YX, Dong SJ (2010) ACS Nano 4:2429

    Article  CAS  Google Scholar 

  30. Huang ZY, Zhou HH, Li CH, Zeng FY, Fu CP, Kuang YF (2012) J Mater Chem 22:1781

    Article  CAS  Google Scholar 

  31. Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) J Am Chem Soc 130:5856

    Article  CAS  Google Scholar 

  32. Park S, An JH, Jung IW, Piner RD, Richard D, An SJ, Li XS, Velamakanni A, Ruoff RS (2009) Nano Lett 9:1593

    Article  CAS  Google Scholar 

  33. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  34. Dikin A, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558

    Article  Google Scholar 

  35. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Angew Chem Int Ed 48:7752

    Article  CAS  Google Scholar 

  36. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Nano Lett 6:2667

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20123227110018), National Natural Science Foundation of China (No. 51272094), and the Foundation of State Key Laboratory of Coordination Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2828 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Shen, X., Ji, Z. et al. Reduced graphene oxide/CoSe2 nanocomposites: hydrothermal synthesis and their enhanced electrocatalytic activity. J Mater Sci 48, 7913–7919 (2013). https://doi.org/10.1007/s10853-013-7601-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7601-5

Keywords

Navigation