Skip to main content
Log in

In situ fabrication of platinum/graphene composite shell on polymer microspheres through reactive self-assembly and in situ reduction

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We present a simple method to fabricate a uniform-sized graphene–metal–polymer composite microsphere of core–shell structure. On the surface of amine-functionalized polymer microsphere, graphene oxide (GO) sheets were affixed to give a core–shell structure by self-assembly process followed by the immobilization of platinum (Pt) ions to the assembled GO shell. Subsequently, they were chemically reduced in situ converting both GO and Pt ions to reduced GO (RGO) and Pt nanoparticles (NPs), respectively. As a result, a robust RGO-Pt composite shell, composed of RGO sheets and well-distributed Pt NPs, was fabricated on the microsphere surface. Meanwhile, the insulative GO shell was converted to the conductive RGO-Pt shell giving 24.0 S m−1 of electrical conductivity. We demonstrated that the electrical property of the shell was significantly improved by the incorporation of Pt NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhong CJ, Maye MM (2001) Adv Mater 13:1507

    Article  CAS  Google Scholar 

  2. Gong X, Peng S, Wen W et al (2009) Adv Funct Mater 19:292

    Article  CAS  Google Scholar 

  3. Basinska T (2005) Macromol Biosci 5:1145

    Article  CAS  Google Scholar 

  4. Insin N, Tracy JB, Lee H et al (2008) ACS Nano 2:197

    Article  CAS  Google Scholar 

  5. Luo Q, Liu P, Guan Y et al (2010) ACS Appl Mater Interfaces 2:760

    Article  Google Scholar 

  6. Lee JH, Kim DO, Song GS et al (2007) Macromol Rapid Commun 28:634

    Article  CAS  Google Scholar 

  7. Alayoglu S, Nilekar AU, Mavrikakis M et al (2008) Nat Mater 7:333

    Article  CAS  Google Scholar 

  8. Zhou W, Hu X, Bai X et al (2011) ACS Appl Mater Interfaces 3:3839

    Article  CAS  Google Scholar 

  9. Ugelstad J, El-Aasser MS, Vanderhoff JW (1973) J Polym Sci Polym Lett Ed 11:503

    Article  CAS  Google Scholar 

  10. Horák D (1996) Acta Polym 47:20

    Article  Google Scholar 

  11. Rao CNR, Biswas K, Subrahmanyam KS et al (2009) J Mater Chem 19:2457

    Article  CAS  Google Scholar 

  12. Steurer P, Wissert R, Thomann R et al (2009) Macromol Rapid Commun 30:316

    Article  CAS  Google Scholar 

  13. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  14. Rao CNR, Sood AK, Subrahmanyam KS et al (2009) Angew Chem Int Ed 48:7752

    Article  CAS  Google Scholar 

  15. Biswas S, Drzal LT (2010) ACS Appl Mater Interfaces 2:2293

    Article  CAS  Google Scholar 

  16. Lerf A, He H, Forster M et al (1998) J Phys Chem B 102:4477

    Article  CAS  Google Scholar 

  17. Wilson NR, Pandey PA, Beanland R et al (2009) ACS Nano 3:2547

    Article  CAS  Google Scholar 

  18. Rourke JP, Pandey PA, Moore JJ et al (2011) Angew Chem Int Ed 50:3173

    Article  CAS  Google Scholar 

  19. Ghosh T, Biswas C, Oh J et al (2012) Chem Mater 24:594

    Article  CAS  Google Scholar 

  20. Georgakilas V, Gournis D, Tzitzios V et al (2007) J Mater Chem 17:2679

    Article  CAS  Google Scholar 

  21. Fu X, Lou T, Chen Z et al (2012) ACS Appl Mater Interfaces 4:1080

    Article  CAS  Google Scholar 

  22. Luong ND, Lee Y, Nam J (2008) J Mater Chem 18:4254

    Article  CAS  Google Scholar 

  23. Yoo E, Okata T, Akita T et al (2009) Nano Lett 9:2255

    Article  CAS  Google Scholar 

  24. Song H, Zhang L, He C et al (2011) J Mater Chem 21:5972

    Article  CAS  Google Scholar 

  25. Chandra V, Park J, Chun Y et al (2010) ACS Nano 4:3979

    Article  CAS  Google Scholar 

  26. Lee J, Lee Y, Nam J (2009) Macromol Rapid Commun 30:52

    Article  CAS  Google Scholar 

  27. Lee JH, Oh JS, Lee PC et al (2008) J Electron Mater 37:1648

    Article  CAS  Google Scholar 

  28. Chen CW, Serizawa T, Akashi M (1999) Chem Mater 11:1381

    Article  CAS  Google Scholar 

  29. Lee J, Lee Y, Nam J (2009) Intermetallics 17:365

    Article  CAS  Google Scholar 

  30. Chien CC, Jeng KT (2006) Mater Chem Phys 99:80

    Article  CAS  Google Scholar 

  31. Malard LM, Pimenta MA, Dresselhaus G et al (2009) Phys Rep 473:51

    Article  CAS  Google Scholar 

  32. Stankovich S, Dikin DA, Piner RD et al (2007) Carbon 45:1558

    Article  CAS  Google Scholar 

  33. Xu C, Wang X, Zhu J (2008) J Phys Chem C 112:19841

    Article  CAS  Google Scholar 

  34. Che J, Shen L, Xiao Y (2010) J Mater Chem 20:1722

    Article  CAS  Google Scholar 

  35. Schneider B, Štokr J, Schmidt P et al (1979) Polymer 20:705

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by WCU (World Class University) Program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (No. R31-2008-000-10029-0). The authors also acknowledge the instrumental and technical support provided by the GRRC program from Gyeonggi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Do Nam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, JS., Luong, N.D., Hwang, TS. et al. In situ fabrication of platinum/graphene composite shell on polymer microspheres through reactive self-assembly and in situ reduction. J Mater Sci 48, 1127–1133 (2013). https://doi.org/10.1007/s10853-012-6848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6848-6

Keywords

Navigation