Skip to main content
Log in

Compressibility of electrospun fiber mats

  • Polymer Fibers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Compressive properties of electrospun fiber mats are reported for the first time. Mats of bisphenol-A polysulfone (PSU) and of poly(trimethyl hexamethylene terephthalamide) [PA 6(3)T] were electrospun and annealed over a range of temperatures spanning the glass transition temperature of each polymer. The data for applied stress versus mat solidity were found to be well-described by a power law of the form \( \sigma_{\text{zz}} = kE\left( {\phi^{n} - \phi_{0}^{n} } \right) \), where \( \sigma_{\text{zz}} \) is the applied stress and ϕ is solidity, in accord with the analysis of Toll (Polym Eng Sci 38(8):1337, 2004). The values of n range from 3.2 to 6 for PSU and from 8.0 to 20 for PA 6(3)T. The lowest values in each case were exhibited by mats annealed near the glass transition temperature of the fiber material. The values of n are independent of fiber diameter. The higher values of n are attributed to fiber slippage via a mechanism analogous to that of work hardening of metals. The values of kE can vary by an order of magnitude and were difficult to determine precisely, due to the nature of the power law and the inhomogeneity of the mats. The compressibility of electrospun mats in response to an applied stress is sufficiently large that it cannot be neglected in applications where large pressures may be involved, such as filtration or membrane separations. In addition to the initial solidity of the mats, the material compressibility and the operating pressure relevant to the application are important to describe the structure of electrospun mats quantitatively under conditions of use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Burger C, Hsiao B, Chu B (2006) Annu Rev Mater Res 36(1):333

    Article  CAS  Google Scholar 

  2. Cancedda R, Dozin B, Giannoni P, Quarto R (2003) Matrix Biol 22:81–91

    Article  CAS  Google Scholar 

  3. Lowery JL, Datta N, Rutledge GC (2010) Biomaterials 31:491

    Article  CAS  Google Scholar 

  4. Luu Y, Kim K, Hsiao B, Chu B, Hadjiargyrou M (2003) J Control Release 89:341

    Article  CAS  Google Scholar 

  5. Liu H, Kameoka J, Czaplewski D, Craighead H (2004) Nano Lett 4:671

    Article  CAS  Google Scholar 

  6. Chen L, Bromberg L, Lee JA, Zhang H, Schreuder-Gibson H, Gibson P, Walker J, Hammond PT, Hatton TA, Rutledge GC (2010) Chem Mater 22(4):1429

    Article  CAS  Google Scholar 

  7. Yoon K, Hsiao B, Chu B (2008) J Mater Chem 18:5326

    Article  CAS  Google Scholar 

  8. Huang L, Manickam S, McCutcheon J (2013) J Membr Sci 436:213

    Article  CAS  Google Scholar 

  9. Mannarino MM, Rutledge GC (2012) Polymer 56:3017

    Article  Google Scholar 

  10. Van Wyk CM (1946) J Text Inst Trans 37(12):T285–T292

    Article  Google Scholar 

  11. Komori T, Itoh M (1991) Text Res J 61:588

    Article  Google Scholar 

  12. Pan N (1993) Text Res J 63:336

    Article  Google Scholar 

  13. Komori T, Itoh M (1994) Text Res J 64:519

    Article  Google Scholar 

  14. Carnaby GA, Pan N (1989) Text Res J 59:275

    Article  CAS  Google Scholar 

  15. Toll S (1998) Polym Eng Sci 38(8):1337

    Article  CAS  Google Scholar 

  16. Baudequin M, Ryschenkow G, Roux S (1999) Eur Phys J B 12:157

    Article  CAS  Google Scholar 

  17. Dunlop J (1983) J Text Inst 74(2):92–97

    Article  Google Scholar 

  18. Lundquist L, Leterrier F, Manson J (2004) Polym Eng Sci 44(1):45

    Article  CAS  Google Scholar 

  19. Kim Y, McCarthy S (1991) Polym Compos 12(1):13

    Article  Google Scholar 

  20. Jaganathan S, Tafreshi HV, Shim E, Pourdeyhimi B (2009) Colloids Surf A 337:173

    Article  CAS  Google Scholar 

  21. Eichhorn SJ, Sampson WW (2010) J R Soc Interface 7(45):641

    Article  CAS  Google Scholar 

  22. Implementation in MATLAB (R2009a, The Mathworks Inc.) was kindly provided by Dimitrios Tzeranis

  23. Jahne B (2005) Digital image processing. Springer, New York

    Google Scholar 

  24. ASTM Standard D575, 1991 (2012) Standard test methods for rubber properties in compression. ASTM International, West Conshohocken

    Google Scholar 

  25. Li N, Fane A, Ho W, Matsuura T (2008) Wiley, New Jersey, 102, Fig. 5.1

  26. Degarmo P, Black JT, Kohser RA (2003) Materials and processes in manufacturing, 9th edn. Wiley, New Jersey

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the King Fahd University of Petroleum and Minerals (KFUPM) in Dhahran, Saudi Arabia, for funding through the Center for Clean Water and Clean Energy at MIT and KFUPM under PROJECT NUMBER R5-CW-08. We would also like to thank Dr. Zafarullah Khan and Dr. S. M. Javaid Zaidi of KFUPM for many helpful discussions, and the Institute for Soldier Nanotechnology at MIT for use of facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory C. Rutledge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choong, L.T., Mannarino, M.M., Basu, S. et al. Compressibility of electrospun fiber mats. J Mater Sci 48, 7827–7836 (2013). https://doi.org/10.1007/s10853-013-7528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7528-x

Keywords

Navigation