Skip to main content
Log in

Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Curcumin (Cur) is a well-known extract of the root of Curcuma longa L. that has multi biological functions such as anti-oxidation, anti-inflammatory, anti-cancer, and wound healing properties. In the present study, poly (lactic acid) (PLA) nanofibers were used as a carrier for Cur because PLA nanofibers are biocompatible and have a high-specific surface area and high porosity, which can enhance the functional properties of Cur. The chemical and biological characteristics of Cur/PLA blended nanofibers containing varied amounts of Cur were examined. An increase from 0.125 to 6.250 wt% Cur in PLA caused a decrease in the diameters of the nanofibers from 971 ± 274 to 562 ± 177 nm. At Cur concentrations of <1.250 wt%, PLA and Cur showed good miscibility in the blended nanofibers, as shown by FTIR analysis and tensile tests. The inclusion of Cur in the blended nanofibers at concentration as low as 0.125 wt% promotes the attachment and proliferation of cells. The in vivo wound healing capability of Cur-loaded PLA nanofibers was assessed in a mouse model; treatment with Cur-loaded PLA nanofibers significantly increased the rate of wound closure (87 %) by day 7 compared with that of PLA nanofibers (58 %). The results of this study suggest that Cur-loaded nanofibers with appropriate Cur concentration are nontoxic and have potential as component of wound-healing patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhardwaj N, Kundu SC (2010) Biotechnol Adv 28:325

    Article  CAS  Google Scholar 

  2. Wang HS, Fu GD, Li XS (2009) Recent Pat Nanotechnol 3:21

    Article  Google Scholar 

  3. Sill TJ, von Recum HA (2008) Biomaterials 29:1989

    Article  CAS  Google Scholar 

  4. Liang D, Hsiao BS, Chu B (2007) Adv Drug Deliv Rev 59:1392

    Article  CAS  Google Scholar 

  5. Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P (2010) Polym Adv Technol 21:77

    CAS  Google Scholar 

  6. Chong EJ, Phan Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Acta Biomater 3:321

    Article  CAS  Google Scholar 

  7. Powell HM, Supp DM, Boyce ST (2008) Biomaterials 29:834

    Article  CAS  Google Scholar 

  8. Choi JS, Leong KW, Yoo HS (2008) Biomaterials 29:587

    Article  CAS  Google Scholar 

  9. Khil MS, Cha DI, Kim HI, Kim IS, Bhattarai N (2003) J Biomed Mater Res B 67B:675

    Article  CAS  Google Scholar 

  10. Liu SJ, Kau YC, Chou CY, Chen JK, Wu RC, Yeh WL (2010) J Membr Sci 355:53

    Article  CAS  Google Scholar 

  11. Chen ZG, Wang PW, Wei B, Mo XM, Cui FZ (2010) Acta Biomater 6:372

    Article  CAS  Google Scholar 

  12. Liu X, Lin T, Fang Z, Yao G, Wang XG (2008) Adv Sci Technol 57:125

    Article  CAS  Google Scholar 

  13. Schneider A, Wang XY, Kaplan DL, Garlick JA, Egles C (2009) Acta Biomater 5:2570

    Article  CAS  Google Scholar 

  14. Bölgen N, Vargel I, Korkusuz P, Menceloğlu YZ, Pişkin E (2007) J Biomed Mater Res B 81B:530

    Article  Google Scholar 

  15. Chen Y, Lin J, Fei Y, Wang H, Gao W (2010) Fiber Polym 11:1128

    Article  CAS  Google Scholar 

  16. Kössler S, Nofziger C, Jakab M, Dossena S, Paulmichl M (2012) Toxicology 292:123

    Article  Google Scholar 

  17. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Life Sci 78:2081

    Article  CAS  Google Scholar 

  18. Srivastava RM, Singh S, Dubey SK, Misra K, Khar A (2011) Int Immunopharmacol 11:331

    Article  CAS  Google Scholar 

  19. Notoya M, Nishimura H, Woo JT, Nagai K, Ishihara Y, Hagiwara H (2006) Eur J Pharmacol 534:55

    Article  CAS  Google Scholar 

  20. Panchatcharam M, Miriyala S, Gayathri V, Suguna L (2006) Mol Cell Biochem 290:87

    Article  CAS  Google Scholar 

  21. Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, Maheshwari RK (1998) Wound Repair Regen 6:167

    Article  CAS  Google Scholar 

  22. Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X, Qian Z (2011) Nanoscale 3:1558

    Article  CAS  Google Scholar 

  23. Wang X, Jiang Y, Wang YW, Huang MT, Ho CT, Huang Q (2008) Food Chem 108:419

    Article  CAS  Google Scholar 

  24. Kumar V, Lewis SA, Mutalik S, Shenoy DB, Venkatesh, Udupa N (2002) Indian J Physiol Pharmacol 46:209

    CAS  Google Scholar 

  25. Gopinath D, Ahmed MR, Gomathi K, Chitra K, Sehgal PK, Jayakumar R (2004) Biomaterials 25:1911

    Article  CAS  Google Scholar 

  26. Ratanajiajaroen P, Watthanaphanit A, Tamura H, Tokura S, Rujiravanit R (2012) Eur Polym J 48:512

    Article  CAS  Google Scholar 

  27. Merrell JG, McLaughlin SW, Tie L, Laurencin CT, Chen AF, Nair LS (2009) Clin Exp Pharmacol Physiol 36:1149

    Article  CAS  Google Scholar 

  28. Suwantong O, Ruktanonchai U, Supaphol P (2010) J Biomed Mater Res A 94A:1216

    CAS  Google Scholar 

  29. Foldberg S, Petersen M, Fojan P, Gurevich L, Fink T, Pennisi CP, Zachar V (2012) Colloid Surf B 93:92

    Article  CAS  Google Scholar 

  30. Evans RGD, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi RK, Lu L, Mikos AG, Patrick CW Jr (2002) Biomaterials 23:841

    Article  CAS  Google Scholar 

  31. Gu SY, Ren J (2005) Macromol Mater Eng 290:1097

    Article  CAS  Google Scholar 

  32. Ribeiro C, Sencadas V, Costa CM, Ribelles JL, Lanceros-Mendez S (2011) Sci Technol Adv Mater 12:015001

    Article  Google Scholar 

  33. Rahman NA, Gizdavic-Nikolaidis M, Ray S, Easteal AJ, Travas-Sejdic J (2010) Synth Met 160:2015

    Article  Google Scholar 

  34. Gizdavic-Nikolaidis M, Ray S, Bennett J, Swift S, Bowmaker G, Easteal A (2011) J Polym Sci Polym Chem 49:4902

    Article  CAS  Google Scholar 

  35. Andrady AL (2008) Science and technology of polymer nanofibers. Wiley, New Jersey

    Book  Google Scholar 

  36. Nguyen TTT, Ghosh C, Hwang SG, Chanunpanich N, Park JS (2012) Int J Pharm 439:296

    Article  CAS  Google Scholar 

  37. Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS, Bae JH, Min DS, Chang JS, Jeong YJ, Lee YH, Park JW, Kwon TK (2003) Carcinogenesis 24:1199

    Article  CAS  Google Scholar 

  38. Scharstuhl A, Mutsaers HAM, Pennings SWC, Szarek WA, Russel FGM, Wagener FDA (2009) J Cell Mol Med 13:712

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was partially financially supported by the “2011 Overseas Benchmarking Program of Hankyong National University”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Seo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T.T.T., Ghosh, C., Hwang, SG. et al. Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J Mater Sci 48, 7125–7133 (2013). https://doi.org/10.1007/s10853-013-7527-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7527-y

Keywords

Navigation