Skip to main content
Log in

Cellulose nanocrystals and self-assembled nanostructures from cotton, rice straw and grape skin: a source perspective

  • Polymer Fibers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNCs) have been derived by sulfuric acid hydrolysis (64–65 wt% H2SO4, 10 mL/g cellulose, 45 °C) of pure cellulose isolated from cotton, rice straw and grape skin, producing relatively consistent products in 60, 45 and 30 min, respectively, and generally reflecting the extent of crystallinity and crystallite sizes of these cellulose sources. CNCs in nanorod forms are observed from all three cellulose sources and, in the case of cotton and grape skin, in the presence of more dominant forms of nanoparticles. Cotton CNCs are <10-nm-wide nanorods at up to 40 aspect ratios, whereas rice straw CNCs are flat ribbon cross-sectional shaped in 10:2:1–44:5:1 length/width/thickness ratios, and those from grape skin are abundant nanoparticles but fewer nanorods, all of very different nanoscale dimensions. Freezing (−196 °C) and freeze-drying (−50 °C) of dilute CNC suspensions induce self-assembling of these CNC populations into yet further distinctly different morphologies. Self-assembled cotton CNCs are loosely organized nanorods and nanospheres, whereas grape skin CNCs are mainly nanospheres of 5-nm-sized nanoparticles clusters around nanorod cores. Uniquely, rice straw CNCs assembled anisotropically into ultra-thin non-porous fibers. These source-linked unique CNC geometries and the ability of CNCs to self-assemble into different morphologies present wide ranging dimensions of these renewable cellulose nanomaterial building blocks from by-products of the world largest fiber, cereal and fruit crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saxena IM, Brown RM Jr (2005) Ann Bot 96(1):9. doi:10.1093/aob/mci155

    Article  CAS  Google Scholar 

  2. Hanley SJ, Giasson J, Revol JF, Gray DG (1992) Polymer 33(21):4639. doi:10.1016/0032-3861(92)90426-W

    Article  CAS  Google Scholar 

  3. Terech P, Chazeau L, Cavaille JY (1999) Macromolecules 32(6):1872. doi:10.1021/ma9810621

    Article  CAS  Google Scholar 

  4. Grunert M, Winter WT (2002) J Polym Environ 10(1/2):27. doi:10.1023/A:1021065905986

    Article  CAS  Google Scholar 

  5. Beck-Candanedo S, Roman M, Gray DG (2005) Biomacromolecules 6(2):1048. doi:10.1021/bm049300p

    Article  CAS  Google Scholar 

  6. Lu P, Hsieh Y-L (2010) Carbohydr Polym 82(1):329. doi:10.1016/j.carbpol.2010.04.073

    Article  Google Scholar 

  7. Samir MASA, Alloin F, Dufresne A (2005) Biomacromolecules 6(2):612. doi:10.1021/bm0493685

    Article  CAS  Google Scholar 

  8. Helbert W, Cavaille JY, Dufresne A (1996) Polym Compost 17(4):604. doi:10.1002/pc.10650

    Article  CAS  Google Scholar 

  9. Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci 57(165):651. doi:10.1002/pol.1962.1205716551

    Article  CAS  Google Scholar 

  10. Sturcova A, Davies GR, Eichhorn SJ (2005) Biomacromolecules 6(2):1055. doi:10.1021/bm049291k

    Article  CAS  Google Scholar 

  11. Wong EW, Sheehan PE, Lieber CM (1997) Science 277(5334):1971. doi:10.1126/science.277.5334.1971

    Article  CAS  Google Scholar 

  12. Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287(5453):637. doi:10.1126/science.287.5453.637

    Article  CAS  Google Scholar 

  13. Klemm D, Kramer F, Moritz S, Lindström Ankerfors TM, Gray D et al (2011) Angew Chem Int Ed 50:5438. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  14. Production Statistics, Food and Agriculture Organization of the United Nations, http://faostat.fao.org

  15. Hsieh Y-L (2006) In: Gordon S, Hsieh Y-L (eds) Cotton science and technology. Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  16. Karimi K, Kheradmandinia S, Taherzadeh MJ (2006) Biomass Bioenergy 30(3):247. doi:10.1016/j.biombioe.2005.11.015

    Article  CAS  Google Scholar 

  17. Spigno G, Pizzorno T, De Faveri DM (2008) Bioresour Technol 99(10):4329. doi:10.1016/j.biortech.2007.08.044

    Article  CAS  Google Scholar 

  18. Prozil SO, Evtuguin DV, Lopes LPC (2012) Ind Crops Prod 35(1):178. doi:10.1016/j.indcrop.2011.06.035

    Article  CAS  Google Scholar 

  19. Lu P, Hsieh Y-L (2012) Carbohydr Polym 87(1):564. doi:10.1016/j.carbpol.2011.08.022

    Article  CAS  Google Scholar 

  20. Lu P, Hsieh Y-L (2012) Carbohydr Polym 87(4):2546. doi:10.1016/j.carbpol.2011.11.023

    Article  CAS  Google Scholar 

  21. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) Biomacromolecules 9(1):57. doi:10.1021/bm700769p

    Article  CAS  Google Scholar 

  22. Jiang F, Esker AR, Roman M (2010) Langmuir 26(23):17919. doi:10.1021/la1028405

    Article  CAS  Google Scholar 

  23. Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Langmuir 26(6):4480. doi:10.1021/la903111j

    Article  CAS  Google Scholar 

  24. Cheng RS, Wang N, Ding E (2008) Langmuir 24(1):5. doi:10.1021/la702923w

    Article  Google Scholar 

  25. Ragauskas AJ, Zhang JG, Elder TJ, Pu YQ (2007) Carbohydr Polym 69(3):607. doi:10.1016/j.carbpol.2007.01.019

    Article  Google Scholar 

Download references

Acknowledgements

The author appreciates the fine experimental work by Ping Lu and Feng Jiang and funding from the California Rice Research Board, the National Textile Center and US Department of Agriculture, National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Lo Hsieh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6413 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, YL. Cellulose nanocrystals and self-assembled nanostructures from cotton, rice straw and grape skin: a source perspective. J Mater Sci 48, 7837–7846 (2013). https://doi.org/10.1007/s10853-013-7512-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7512-5

Keywords

Navigation