Skip to main content
Log in

Density and viscosity of ternary Cr–Fe–Ni liquid alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The density and viscosity of ternary Cr–Fe–Ni liquid alloys have been investigated over a wide temperature range. The density was measured using electromagnetic levitation as a container-less technique, while viscosity was measured by means of a high-temperature oscillating cup viscometer. Although, the concentration dependence of density shows the influence of the second order (binary) interaction parameter in excess volume, the influence of a third order (ternary) interaction parameter in excess volume can be neglected. The temperature dependences of the viscosities are well described by the Arrhenius law. The viscosity increases monotonically as Fe or Cr concentration increases. For constant temperature, the viscosity as a function of iron molar faction can be described by a thermodynamic model using the enthalpy of mixing as input parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wakamatsu T, Ozawa S, Fukuyama H, Kobatake H, Watanabe M, Mizuno A, Hibiya T, (2008) Proceedings 29th Japan Symposium on Thermophysical Properties, Japan Society of Thermophysical Properties, Tokyo, p 179

  2. Hirai M (1993) Iron Steel Inst Jpn Int 33:251

    Article  CAS  Google Scholar 

  3. Kapty G (2003) Proceedings of MicroCad 2003, International Conference, Section, Metallurgy, University of Miskolc, Hungary, p 23

  4. Sharan A, Nagasaka T, Cramb AW (1994) Met Mater Trans B 25:939

    Article  Google Scholar 

  5. Brillo J, Egry I (2004) Z Metallkd 95:6911

    Google Scholar 

  6. Tsu Y, Takano K, Watanabe S, Shiraishi Y (1978) Tohoku Daigaku Senko Seiren Kenkyusho Iho 34:131

    CAS  Google Scholar 

  7. Kobatake H, Brillo J (2012) J Mater Sci. doi:10.1007/s10853-013-7274-0

  8. Sato Y, Sugisawa K, Aoki D, Yamamura T (2005) Meas Sci Technol 16:363

    Article  CAS  Google Scholar 

  9. Kehr M, Hoyer W, Egry I (2007) Int J Thermophys 28:1017

    Article  CAS  Google Scholar 

  10. Schick M, Brillo J, Egry I, Hallstedt B (2012) J Mater Sci 47:8145. doi:10.1007/s10853-012-6710-x

    Article  CAS  Google Scholar 

  11. Brillo J, Egry I (2004) Z Metallkd 95:6911

    Google Scholar 

  12. Brillo J, Egry I (2003) Int J Thermophys 24:1155

    Article  CAS  Google Scholar 

  13. Vegard L (1921) Z. Phys 5:17

    Article  CAS  Google Scholar 

  14. Adachi M, Schick M, Brillo J, Egry I, Watanabe M (2010) J Mater Sci 45:2002. doi:10.1007/s10853-009-4149-5

    Article  CAS  Google Scholar 

  15. Krishnan S, Hansen GP, Hauge RH, Margrave JL (1990) High Temp Sci 29:17

    CAS  Google Scholar 

  16. Krishnan S, Yugawa K, Nordine PC (1997) Phys Rev B 55:8201

    Article  CAS  Google Scholar 

  17. Kobatake H, Khosroabadi H, Fukuyama H (2012) Met Mat Trans A 43:2466

    Article  CAS  Google Scholar 

  18. Hillert M, Qiu C (1990) Met Mat Trans A 21:1673

    Article  Google Scholar 

  19. Brillo J, Egry I, Ho I (2006) Int J Thermophys 27:494

    Article  CAS  Google Scholar 

  20. Ferris D, Quested PN (2002) NPL Report (A) 306

  21. Roscoe R (1958) Proc Phys Soc 72:576

    Article  CAS  Google Scholar 

  22. Kinzoku data book 4th edn (2004) The Japan Institute of metals, Maruzen, Tokyo, p 223

  23. Brillo J, Egry I, Matsushita T (2006) Int J Thermophys 27:1778

    Article  CAS  Google Scholar 

  24. Schick M, Brillo J, Egry I (2009) Int J Cast Met Res 22:82

    Article  CAS  Google Scholar 

  25. Kozlow LY, Romanov LM, Petrov NN, Vuzov Izv (1983) Chernaya Metall 3:7

    Google Scholar 

  26. Brools RF, Dinsdale AT, Quested PN (2005) Meas Sci Technol 16:354

    Article  Google Scholar 

  27. Miettinen J (1999) Calphad 23:231

    Article  CAS  Google Scholar 

  28. Kehr M, Schick M, Hoyer W, Egry I (2008) High Temp High Press 37:361

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Professor Dr. Dieter Herlach for a critical review of this study and his valuable suggestions. One of the authors (H. K.) is grateful to the German Academic Exchange Service DAAD for financial support (A/11/94004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Kobatake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobatake, H., Brillo, J. Density and viscosity of ternary Cr–Fe–Ni liquid alloys. J Mater Sci 48, 6818–6824 (2013). https://doi.org/10.1007/s10853-013-7487-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7487-2

Keywords

Navigation