Skip to main content
Log in

TiO2/clinoptilolite composites for photocatalytic degradation of anionic and cationic contaminants

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present work aims to study the bulk and surface properties of the TiO2/clinoptilolite composite on the crystalline structure, superficial area, bandgap energy, zeta potential, particle size distribution, and chemical composition; in order to analyze the effect of the clinoptilolite proportion in the photocatalytic degradation of pollutants. TiO2/clinoptilolite composites were prepared by adding different mass proportions of clinoptilolite to a sol–gel bath containing TiCl4 as the titania precursor. Surface charge studies explain the larger sensitivity to composite ratio observed in the photocatalytic degradation of anionic pollutants than in cationic dyes. An optimum TiO2/clinoptilolite ratio of 90/10 was found to be the most efficient in terms of lower tendency to agglomeration, largest surface area, and increased crystallite size. Improvement in composite surface area occurs only at low clinoptilolite wt% and seems to be caused by lower agglomeration of nanometric TiO2 and acid-induced porosity in the zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu HC, Lin YS, Lin SW (2013) Int J Photoenergy

  2. Fatimah I (2013) Disinfect Bull Chem React Eng Catal 7(3):191. doi:10.9767/bcrec.7.3.4047.191-197

    CAS  Google Scholar 

  3. Carvalho GC, Foletto EL, Jahn SL, Villetti MA (2012) J Environ Manage 98:107

    Article  Google Scholar 

  4. Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z (2012) Angew Chem 124:3420

    Article  Google Scholar 

  5. Krejcíková S, Matejová L, Kocí K, Obalová L, Matej Z, Capek L, Solcová O (2012) Appl Catal B 111–112:119. doi:10.1016/j.apcatb.2011.09.024

    Google Scholar 

  6. Khakpash N, Simchi A, Jafari T (2012) J Mater Sci 23:659. doi:10.1007/s10854-011-0466-y

    CAS  Google Scholar 

  7. Khezrianjoo S, Doddarevanna Revanasiddappa H (2013) J Catal

  8. Kowalczyk P, Sprynskyy M, Terzyk AP, Lebedynets M, Namiesnik J, Buszewski B (2006) J Colloid Interface Sci 297:77

    Article  CAS  Google Scholar 

  9. Khodadoust S, Sheini A, Armand N (2012) Spectrochim Acta, Part A 92:91

    Article  CAS  Google Scholar 

  10. Ilinoiu EC, Pode R, Manea F, Colar LA, Jakab A, Orha C, Ratiu C, Lazau C, Sfarloaga P (2013) J Taiwan Inst Chem Eng 44:270

    Article  CAS  Google Scholar 

  11. Ochieng A, Pambi RLL, Netshitangani P, Akach J, Onyango MS (2012) J Sustain Dev Environ Prot 2:36

    Google Scholar 

  12. Li F, Jiang Y, Yu L, Yang Z, Hou T, Sun S (2005) Appl Surf Sci 252:1410

    Article  CAS  Google Scholar 

  13. Nikazar M, Gholivand K, Mahanpoor K (2007) Kinet Catal 48:214

    Article  Google Scholar 

  14. Nikazar M, Gholivand K, Mahanpoor K (2008) Desalination 219:293

    Article  CAS  Google Scholar 

  15. Trujillo Camacho ME, García C, Hinojosa JF, Castillón FF (2010) Revista Mexicana de Ingeniería Química 9:139 (ISSN 1665-2738)

    Google Scholar 

  16. Eaton AD, Clesceri LS, Greenberg AE, Franson MAH (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  17. Yang-hsin S, Cheng-han L (2012) Environ Sci Pollut Res 19:1652

    Article  Google Scholar 

  18. Yu J, Zhao X, Zhao Q (2000) Thin Solid Films 379:7

    Article  CAS  Google Scholar 

  19. Ming C, Wu P (2005) Chin J Geochem 24:370

    Article  CAS  Google Scholar 

  20. Paul B, Martens WN, Frost RL (2012) Appl Clay Sci 57:49

    Article  CAS  Google Scholar 

  21. Araña J, Doña-Rodríguez JM, Tello Rendóna E, Garriga i Caboa C, González-Díaz O, Herrera-Melián JA, Pérez-Peña J, Colón G, Navío JA (2003) Appl Catal B 44:161

    Article  Google Scholar 

  22. Rincón ME, Trujillo-Camacho ME, Cuentas-Gallegos AK (2005) Catal Today 107–108:606

    Article  Google Scholar 

  23. Holmberg BA, Wang H, Yan Y (2004) Microporous Mesoporous Mater 74:189

    Article  CAS  Google Scholar 

  24. Mingyu L, Xiaoqiang Z, Fenghua Z, Gang R, Gang C, Lin S (2011) Desalination 271:295

    Article  Google Scholar 

  25. Rožić M, Cerjan-Stefanović Š, Kurajica S, Vančina V, Hodžić E (2000) Water Res 34:3675

    Article  Google Scholar 

  26. Caruta BM (2006) Focus on nanomaterials. Research Nova Science Publishers Inc., New York, p 64

    Google Scholar 

  27. Kurama H, Karagüzel C, Mergan T, Çelik MS (2010) Desalination 253:147

    Article  CAS  Google Scholar 

  28. Wanga X, Ozdemir O, Hampton MA, Nguyen AV, Do DD (2012) Water Res 46:5247

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance of Israel Gradilla M. and Eric Flores A. from CNyN-UNAM, as well as financial support from CONACYT-México through fellowships for Dzoara Hirales Salazar and Lizeth G. Soriano Leyva and projects CB-2007-01-79743 and DGAPA-PAPIIT IN207511.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Trujillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trujillo, M.E., Hirales, D., Rincón, M.E. et al. TiO2/clinoptilolite composites for photocatalytic degradation of anionic and cationic contaminants. J Mater Sci 48, 6778–6785 (2013). https://doi.org/10.1007/s10853-013-7482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7482-7

Keywords

Navigation