Skip to main content
Log in

Effect of particle size of titanium dioxide nanoparticle aggregates on the degradation of one azo dye

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Introduction

Titanium dioxide (TiO2) nanoparticle powders have been extensively studied to quickly photodegrade some organic pollutants; however, the effect of the particle size of TiO2 nanoparticle aggregates on degradation remains unclear because microscale aggregates form once the nanoparticle powders enter into water.

Methods

The degradation of azo dye by different particle sizes of TiO2 nanoparticle aggregates controlled by NaCl concentrations was investigated to evaluate the particle size effect. Removal reactions of reactive black 5 (RB5) with TiO2 nanoparticles followed pseudo-first-order kinetics.

Results

The increase of TiO2 dosage from 40 to 70 mg/L enhanced the degradation. At doses around 100 mg/L TiO2, degradation rates decreased which could be the result of poor UV light transmittance at high-particle concentrations. At average particle sizes of TiO2 nanopowders less than around 500 nm, the degradation rates increased with decreasing particle size. As the average particle size exceeded 500 nm, the degradation rates were not significantly changed.

Conclusions

For the complete degradation experiments, the mineralization rates of total organic carbon disappearance are generally following the RB5 decolorization kinetic trend. These findings can facilitate the application of TiO2 nanoparticles to the design of photodegradation treatments for wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguedach A, Brosillon S, Morvan J, Lhadi EK (2008) Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder. J Hazard Mater 150:250–256

    Article  CAS  Google Scholar 

  • Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments 77:16–23

    Article  CAS  Google Scholar 

  • Almquist CB, Biswas P (2002) Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J Catal 212:145–156

    Article  CAS  Google Scholar 

  • Bahorsky MS (1997) Textiles. War Environ Res 69:658–664

    Article  CAS  Google Scholar 

  • Bandara J, Mielczarski JA, Kiwi J (1999) 2. Photosensitized degradation of azo dyes on Fe, Ti, and Al oxides. mechanism of charge transfer during the degradation. Langmuir 15:7680–7687

    Article  CAS  Google Scholar 

  • Barka N, Qourzal S, Assabbane A, Nounah A, Ait-Ichou Y (2008) Factors influencing the photocatalytic degradation of rhodamine B by TiO2-coated non-woven paper. J Photoch Photobio A 195:346–351

    Article  CAS  Google Scholar 

  • Behnajady MA, Modirshahla N, Shokri M, Elham H, Zeininezhad A (2008) The effect of particle size and crystal structure of titanium dioxide nanoparticles on the photocatalytic properties. J Environ Sci Heal A 43:460–467

    Article  CAS  Google Scholar 

  • Bianco Prevot A, Baiocchi C, Brussino MC, Pramauro E, Savarino P, Augugliaro V, Marcì G, Palmisano L (2001) Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions. Environ Sci Techno 35:971–976

    Article  Google Scholar 

  • Curkovic L, Ljubas D, Juretic H (2010) Photocatalytic decolorization kinetics of diazo dye congo red aqueous solution by UV/TiO2 nanoparticles. React Kinet Mech Cat 99:201–208

    CAS  Google Scholar 

  • Fan J, Guo YH, Wang JJ, Fan MH (2009) Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J Hazard Mater 166:904–910

    Article  CAS  Google Scholar 

  • Hao WC (2002) Comparison of the photocatalytic activity of TiO2 powder with different particle size. J Mater Sci Lett 21:1807

    Google Scholar 

  • He ZQ, Song S, Zhou HM, Ying HP, Chen JM (2007) CI reactive black 5 decolorization by combined sonolysis and ozonation. Ultrason Sonochem 14:298–304

    Article  CAS  Google Scholar 

  • Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B-Environ 31:145–157

    Article  CAS  Google Scholar 

  • Ince NH, Gönenç DT (1997) Treatability of a textile azo dye by UV/H2O2. Environ Technol 18:179–185

    CAS  Google Scholar 

  • Ince NH, Tezcanlí G (2001) Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes Pigments 49:145–153

    Article  CAS  Google Scholar 

  • Jang HD, Kim SK, Kim SJ (2001) Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 3:141–147

    Article  CAS  Google Scholar 

  • Jonstrup M, Kumar N, Murto M, Mattiasson B (2011) Sequential anaerobic–aerobic treatment of azo dyes: decolourisation and amine degradability. Desalination 280:339–346

    Article  CAS  Google Scholar 

  • Khataee AR, Pons MN, Zahraa O (2009) Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. J Hazard Mater 168:451–457

    Article  CAS  Google Scholar 

  • Koci K, Obalova L, Matejova L, Placha D, Lacny Z, Jirkovsky J, Solcova O (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B-Environ 89:494–502

    Article  CAS  Google Scholar 

  • Krajangpan S, Jarabek L, Jepperson J, Chisholm B, Bezbaruah A (2008) Polymer modified iron nanoparticles for environmental remediation, pp. 921–922

  • Kritikos DE, Xekoukoulotakis NP, Psillakis E, Mantzavinos D (2007) Photocatalytic degradation of reactive black 5 in aqueous solutions: effect of operating conditions and coupling with ultrasound irradiation. Water Res 41:2236–2246

    Article  CAS  Google Scholar 

  • Krysa J, Keppert M, Jirkovsky J, Stengl V, Subrt J (2004) The effect of thermal treatment on the properties of TiO2 photocatalyst. Mater Chem Phys 86:333–339

    Article  CAS  Google Scholar 

  • Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng YH (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B-Environ 68:1–11

    Article  CAS  Google Scholar 

  • Maira AJ, Yeung KL, Lee CY, Yue PL, Chan CK (2000) Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J Catal 192:185–196

    Article  CAS  Google Scholar 

  • Mollah MYA, Morkovsky P, Gomes JAG, Kesmez M, Parga J, Cocke DL (2004) Fundamentals, present and future perspectives of electrocoagulation. J Hazard Mater 114:199–210

    Article  CAS  Google Scholar 

  • Murugesan S, Kuppusami P, Mohandas E (2010) Rietveld X-ray diffraction analysis of nanostructured rutile films of titania prepared by pulsed laser deposition. Mater Res Bull 45:6–9

    Article  CAS  Google Scholar 

  • Nikazar M, Gholivand K, Mahanpoor K (2008) Photocatalytic degradation of azo dye acid red 114 in water with TiO2 supported on clinoptilolite as a catalyst. Desalination 219:293–300

    Article  CAS  Google Scholar 

  • Ogutveren UB, Koparal S (1994) Color removal from textile effluents by electrochemical destruction. J Environ Sci Health A Tox Hazard Subst Environ Eng 29:1–16

    Google Scholar 

  • Pelegrini R, Peralta-Zamora P, De Andrade AR, Reyes J, Durán N (1999) Electrochemically assisted photocatalytic degradation of reactive dyes. Appl Catal B-Environ 22:83–90

    Article  CAS  Google Scholar 

  • Raghavacharya C (1997) Colour removal from industrial effluents—a comparative review of available technologies. Chem Eng World 32:53–54

    CAS  Google Scholar 

  • Rajkumar D, Kim JG (2006) Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. J Hazard Mater 136:203–212

    Article  CAS  Google Scholar 

  • Rao VVB, Rao SRM (2006) Adsorption studies on treatment of textile dyeing industrial effluent by flyash. Chem Eng J 116:77–84

    Article  CAS  Google Scholar 

  • Rao KCLN, Krishnaiah K, Ashutosh (1994) Colour removal from a dyestuff industry effluent using activated carbon. Indian J Chem Techn 1:13–19

    CAS  Google Scholar 

  • Reutergardh LB, Iangphasuk M (1997) Photocatalytic decolourization of reactive azo dye: a comparison between TiO2 and CdS photocatalysis. Chemosphere 35:585–596

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP (2009) Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresource Technol 100:2493–2500

    Article  CAS  Google Scholar 

  • Sivalingam G, Nagaveni K, Hegde MS, Madras G (2003) Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2. Appl Catal B-Environ 45:23–38

    Article  CAS  Google Scholar 

  • Slokar YM, Majcen Le Marechal A (1998) Methods of decoloration of textile wastewaters. Dyes Pigments 37:335–356

    Article  CAS  Google Scholar 

  • Tanaka K, Padermpole K, Hisanaga T (2000) Photocatalytic degradation of commercial azo dyes. Water Res 34:327–333

    Article  CAS  Google Scholar 

  • Tso CP, Zhung CM, Shih YH, Tseng YM, Wu SC, Doong RA (2010) Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61:127–133

    Article  CAS  Google Scholar 

  • Ullrich S, Karrasch B, Hoppe H, Jeskulke K, Mehrens M (1996) Toxic effects on bacterial metabolism of the redox dye 5-cyano-2,3-ditolyl tetrazolium chloride. Appl Environ Microb 62:4587–4593

    CAS  Google Scholar 

  • Wang KH, Hsieh YH, Wu CH, Chang CY (2000) The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO2 aqueous suspension. Chemosphere 40:389–394

    Article  CAS  Google Scholar 

  • Zhang ZB, Wang CC, Zakaria R, Ying JY (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102:10871–10878

    Article  CAS  Google Scholar 

  • Zhu HY, Orthman JA, Li JY, Zhao JC, Churchman GJ, Vansant EF (2002) Novel composites of TiO2 (anatase) and silicate nanoparticles. Chem Mater 14:5037–5044

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Science Council of Taiwan, R.O.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-hsin Shih.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Structure of RB5 (DOCX 27 kb)

Fig. S2

Schematic diagram of photochemical apparatus (DOCX 28 kb)

Fig. S3

DLS analysis of 40 mg/L TiO2 nanoparticles with and without ultrasonication (DOCX 22 kb)

Fig. S4

The XRD pattern of TiO2 nanoparticles (DOCX 195 kb)

Fig. S5

The particle size change of TiO2 nanoparticle powder with time: (a) average particle size change with time by DLS, the number in parentheses means the average, (b) particle size distribution with time by DLS, up left picture for 40 meq/L, and (c) particle size observed by TEM (DOCX 644 kb)

Fig. S6

The sorption of RB5 on TiO2 nanoparticle aggregates with different particle size. The number in parentheses means average particle size (DOCX 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, Yh., Lin, Ch. Effect of particle size of titanium dioxide nanoparticle aggregates on the degradation of one azo dye. Environ Sci Pollut Res 19, 1652–1658 (2012). https://doi.org/10.1007/s11356-011-0669-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0669-z

Keywords

Navigation