Skip to main content
Log in

Microstrain and growth fault structures in electrodeposited nanocrystalline Ni and Ni–Fe alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocrystalline Ni and Ni–Fe alloys produced by electrodeposition were characterized using high-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD). The grain sizes for these materials spanned a range of about 81–10 nm. HR-TEM analysis on a series of images revealed the presence of local strains at both high-angle and low-angle grain boundaries and twin boundaries. In addition to this, stacking faults and twins of the growth type (growth faults) were observed in both the nanocrystalline Ni and Ni–Fe alloys. The growth fault density increased with increasing Fe concentration, which is consistent with a decrease in the stacking fault energy. The microstrain for the samples was determined from XRD pattern analysis based on line broadening. A general increasing microstrain trend with decreasing grain size was observed and considered to be related to the local strains observed at grain boundaries in the HR-TEM image analysis. With respect to grain size, the microstrain values for the nanocrystalline Ni–Fe samples were noticeably higher than some of the Ni samples. Further XRD pattern analysis was performed to determine the growth fault probabilities for each of the samples and analyze their influence on the microstrain. Increasing Fe was accompanied by an increase in growth fault probability, which was consistent with the HR-TEM image analysis. In addition to the effect of grain size, there is likely a contributing effect on microstrain-induced XRD line broadening due to the presence of growth faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Eckert J, Holzer JC, Krill CE, Johnson WL (1992) J Mater Res 7:1751

    Article  CAS  Google Scholar 

  2. Weissmuller J, Loffler J, Kleber M (1995) Nanostruct Mater 6:105

    Article  Google Scholar 

  3. Eastman JA, Beno MA, Knapp GS, Thompson LJ (1995) Nantostruct Mater 6:543

    Article  Google Scholar 

  4. Sanders PG, Witney AB, Weertman JR, Valiev RZ, Siegel RW (1995) Mat Sci Eng A 204:7

    Article  Google Scholar 

  5. Sun NX, Zhang K, Zhang XH, Liu XD, Lu K (1996) Nanostructur Mater 7:637

    Article  CAS  Google Scholar 

  6. Malow TR, Koch CC (1997) Acta Mater 45:2177

    Article  CAS  Google Scholar 

  7. Zhao YH, Sheng HW, Lu K (2001) Acta Mater 49:365

    Article  CAS  Google Scholar 

  8. Li H, Ebrahimi F (2003) Mater Sci Eng A 347:93

    Article  Google Scholar 

  9. Mishra R, Basu B, Balasubramaniam R (2004) Mater Sci Eng A 373:370

    Article  Google Scholar 

  10. Derlet PM, Van Petegem S, Van Swygenhoven H (2005) Phys Rev B 71:024114

    Article  Google Scholar 

  11. Qin W, Szpunar JA (2005) Phil Mag Lett 85:649

    Article  CAS  Google Scholar 

  12. Biju V, Sugathan N, Vrinda V, Salini SL (2008) J Mater Sci 43:1175. doi:10.1007/s10853-007-2300-8

    Article  CAS  Google Scholar 

  13. Mehta SC, Smith DA, Erb U (1995) Mat Sci Eng A 204:227

    Article  Google Scholar 

  14. Palumbo G, Thorpe SJ, Aust KT (1990) Scripta Metall Mater 24:1347

    Article  CAS  Google Scholar 

  15. Wunderlich W, Ishida Y, Maurer R (1990) Scripta Metall Mater 24:403

    Article  CAS  Google Scholar 

  16. Ping DH, Li DX, Ye HQ (1995) J Mater Sci Lett 14:1536

    Article  CAS  Google Scholar 

  17. Li DX, Ping DH, Huang JY, Yu YD, Ye HQ (2000) Micron 31:581

    Article  CAS  Google Scholar 

  18. Valiev RZ, Islamagaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  19. Ungar T (2007) J Mater Sci 42:1584. doi:10.1007/s10853-006-0696-1

    Article  CAS  Google Scholar 

  20. Stukowski A, Markmann J, Weissmuller J, Albe K (2009) Acta Mater 57:1648

    Article  CAS  Google Scholar 

  21. Qin W, Nagase T, Umakoshi Y, Szpunar JA (2008) Phil Mag Lett 88:169

    Article  CAS  Google Scholar 

  22. Wagner CNJ (1957) Acta Metall 5:427

    Article  CAS  Google Scholar 

  23. Paterson MS (1952) J Appl Phys 23:805

    Article  CAS  Google Scholar 

  24. Hinton RW, Schwartz LH, Cohen JB (1963) J Electrochem Soc 110:103

    Article  CAS  Google Scholar 

  25. Hofer EM, Hintermann HE (1965) J Electrochem Soc 112:167–173

    Article  CAS  Google Scholar 

  26. Suoninen EJ (1967) J Mater Sci 2:40. doi:10.1007/BF00550051

    Article  CAS  Google Scholar 

  27. Nakahara S (1981) J Cryst Growth 55:281

    Article  CAS  Google Scholar 

  28. Anderson RL, Gangulee A, Romankiw LT (1973) J Electron Mater 2:161

    Article  CAS  Google Scholar 

  29. Giallonardo JD, Erb U, Palumbo G, Aust KT (2011) Phil Mag 91:4594

    Article  CAS  Google Scholar 

  30. Brooks I, Palumbo G, Hibbard GD, Wang Z, Erb U (2011) J Mater Sci 46:7713. doi:10.1007/s10853-011-5751-x

    Article  CAS  Google Scholar 

  31. Balzar D (1999) In: Snyder RL, Bunge HJ, Fiala J (eds) Defect and microstructure analysis from diffraction International Union of Crystallography, Monographs on Crystallography No. 10. Oxford University Press, New York

    Google Scholar 

  32. Wilson AJC (1962) X-Ray optics. Methuen, London

    Google Scholar 

  33. Cohen JB, Wagner CNJ (1962) J Appl Phys 33:2073

    Article  CAS  Google Scholar 

  34. He J, Schoenung JM (2002) Mater Sci Eng A 366:274

    Google Scholar 

  35. Van Petegem S, Dalla Torre F, Segers D, Van Swygenhoven H (2003) Scripta Mater 48:17

    Article  Google Scholar 

  36. Haasz TR, Aust KT, Palumbo G, El-Sherik AM, Erb U (1995) Scripta Metall Mater 32:423

    Article  CAS  Google Scholar 

  37. Zhou Y, Van Petegem S, Segers D, Erb U, Aust KT, Palumbo G (2009) Mater Sci Eng A 512:39

    Article  Google Scholar 

  38. Giallonardo JD, Erb U, Palumbo G, Botton GA, Andrei C (2012) Mater Sci Forum 706–709:1607

    Article  Google Scholar 

  39. Wu X, Ma E, Zhu YT (2007) J Mater Sci 42:1427. doi:10.1007/s10853-006-1229-7

    Article  CAS  Google Scholar 

  40. Reed-Hill RE, Abbaschian R (1994) Physical metallurgy principles, 3rd edn. PWS Publishing Company, Boston

    Google Scholar 

  41. Ebrahimi F, Li HQ (2003) Rev Adv Mater Sci 5:134

    CAS  Google Scholar 

  42. Valiev RZ, Gertsman VYu, Kaibyshev OA (1986) Phys Stat Sol A 97:11

    Article  CAS  Google Scholar 

  43. Williams DB, Carter CB (2009) Transmission electron microscopy, 2nd edn. Springer Science, New York

    Book  Google Scholar 

  44. Yang F, Tian W, Feng C, Wang B (2009) Acta Metall Sin (Engl Lett) 22:383

    Article  CAS  Google Scholar 

  45. Wu X-L, Zhu YT, Ma E (2006) App Phys Lett 88:121905

    Article  Google Scholar 

  46. Murr LE (1975) Interfacial phenomena in metals and alloys. Addison-Wesley, London

    Google Scholar 

  47. Nie X, Wang R, Ye Y, Zhou Y, Wang D (1995) Solid State Commun 96:729

    Article  CAS  Google Scholar 

  48. Charnock W, Nutting J (1967) Met Sci J 1:123

    Article  CAS  Google Scholar 

  49. Suryanarayana C, Norton MG (1998) X-ray diffraction—a practical approach. Plenum Press, New York

    Book  Google Scholar 

  50. Carter CB, Holmes SM (1977) Phil Mag 35:1161

    Article  CAS  Google Scholar 

  51. Sambongi T (1965) J Phys Soc Jpn 20:1370

    Article  CAS  Google Scholar 

  52. Ni HT, Zhang XY (2012) Mater Sci Eng A541:216

    Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Sciences and Engineering Research Council of Canada, the Ontario Graduate Scholarship, and the Ontario Research Fund (ORF-RE) is gratefully acknowledged. The authors would also like to thank Mr. E. Gongtao Liu; Dr. S. Petrov of the Department of Chemistry, University of Toronto; and Prof. G.A. Botton and Dr. C. Andrei of the Canadian Center for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Giallonardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giallonardo, J.D., Avramovic-Cingara, G., Palumbo, G. et al. Microstrain and growth fault structures in electrodeposited nanocrystalline Ni and Ni–Fe alloys. J Mater Sci 48, 6689–6699 (2013). https://doi.org/10.1007/s10853-013-7469-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7469-4

Keywords

Navigation