Skip to main content

Advertisement

Log in

Creep in an electrodeposited nickel

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports the experimental results on the creep behavior of electrodeposited ultrafine-grained nickel and its particle-reinforced nanocomposite. The objective of this research was to further improve the knowledge of the creep behavior of monolithic nickel and to explore the role of nano-sized SiO2 particles in the potential creep strengthening of electrodeposited Ni nanocomposite. The creep behavior and microstructure of the pure ultrafine-grained nickel and its nanocomposite reinforced by 2 vol% nano-sized SiO2 particles were studied at temperatures in the range from 293 to 573 K and at the applied tensile stresses between 100 and 800 MPa. The results indicate that the creep resistance of the nanocomposite may be noticeably improved compared to the monolithic nickel due to the interaction of the particles with dislocation motion. It was found that the applied stress interval can be divided into lower and higher stress intervals corresponding to dislocation (power-law) and exponential creep regions, respectively. Analysis of the creep data leads to the suggestion that the creep behavior of both electrodeposited nickel and its nanocomposite in power-law region may be grain boundary controlled. However, the mechanism responsible for the observed creep behavior at lower temperatures and the highest stresses is still not well established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Erb U, Palumbo G, McCrea JL (2011) In: Whang SH (ed) Nanostructured metals and alloys: Processing, microstructure, mechanical properties and applications. Woodhead Publishing Ltd., Oxford, pp 118–151

    Chapter  Google Scholar 

  2. Natter H, Hempelmann R (2008) Z Phys Chem 222:319. doi:10.1524/zpch.2008.222.2-3.319

    Article  CAS  Google Scholar 

  3. Gurrappa I, Binder L (2008) Sci Technol Adv Mater 9:1

    Google Scholar 

  4. Yin W (2011) In: Whang SH (ed) Nanostructured metals and alloys: Processing, microstructure, mechanical properties and applications. Woodhead Publishing Ltd., Oxford, p 594–611

    Chapter  Google Scholar 

  5. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Progr Mater Sci 51:881

    Article  Google Scholar 

  6. Zhu YT, Valiev RZ, Langdon TG (2010) MRS 35:977. doi:10.1557/mrs2010.702

    Article  CAS  Google Scholar 

  7. Valiev RZ, Langdon TG (2011) Metall Mater Trans 42A:2942. doi:10.1007/s11661-010-0556-0

    Article  Google Scholar 

  8. Wang YM, Hamza AV, Ma E (2006) Acta Mater 54:2715. doi:10.1016/j.actamat.2006.02.013

    Article  CAS  Google Scholar 

  9. Kolobov YR, Grabovetskaya GP, Ratochka IV, Ivanov KV (1999) NanoStr Mater 12:1127. doi:10.1016/S0965-9773(99)00311-6

    Article  Google Scholar 

  10. Sklenicka V, Kucharova K, Pahutova M, Vidrich G, Svoboda M, Ferkel H (2005) Rev Adv Mat Sci 10:171

    CAS  Google Scholar 

  11. Sklenicka V, Kucharova K, Pahutova M, Vidrich G, Svoboda M, Ferkel H (2007) Mater Sci Eng 462A:269. doi:10.1016/j.mesa.2005.12.107

    Google Scholar 

  12. Vidrich G, Castagnet JF, Ferkel H (2005) J Electrochem Soc 152:C249. doi:10.1149/1.1885286

    Article  Google Scholar 

  13. Sinning HR, Vidrich G, Riehemann W (2011) Acta Mater 59:4504. doi:10.1016/j.actamat.2011.03.073

    Article  CAS  Google Scholar 

  14. Vidrich G (2008) Grain refinement and dispersion-strengthening with finest ceramic particles. Dissertation, Technische Universität Clausthal, ISBN 978-3-89720-985-5

  15. Cihlarova P, Svejcar J, Sklenicka V (2008) Mater Sci Forum 576–568:205

    Article  Google Scholar 

  16. Cadek J (1988) Creep in metallic materials. Elsevier, Amsterdam

    Google Scholar 

  17. Nabarro FRN (1948) Deformation of crystals by the motion of single ions. In Rep Conf Strength Solids, The Physical Society London, p 75

  18. Herring C (1950) J Appl Phys 21:437

    Article  Google Scholar 

  19. Coble RL (1963) J Appl Phys 31:1679

    Article  Google Scholar 

  20. Langdon TG (2006) J Mater Sci 41:597. doi:10.1007/s10853-006-6476-0

    Article  CAS  Google Scholar 

  21. Wang N, Wang Z, Aust KT, Erb U (1997) Mater Sci Eng A237:150. doi:10.1016/S0921-5093(97)00124-X

    Article  CAS  Google Scholar 

  22. Yin WM, Whang SH, Mirshams R, Xiao CH (2001) Mater Sci Eng A302:18. doi:10.1016/S0921-5093(00)01385-X

    Google Scholar 

  23. Kottada RS, Chokshi AH (2005) Scripta Mater 53:887. doi:10.1016/j.scriptamat.2005.06.035

    Article  CAS  Google Scholar 

  24. Blum W, Li YJ (2007) Scripta Mater 57:429. doi:10.1016/j.scriptamat.2007.04.041

    Article  CAS  Google Scholar 

  25. Mohamed FA, Chauhan M (2006) Metall Mater Trans A 37A:3555. doi:10.1007/s11661-006-1050-6

    Article  CAS  Google Scholar 

  26. Mohamed FA (2008) Metall Mater Trans A 39A:470. doi:10.1007/s11661-007-9416-y

    Article  CAS  Google Scholar 

  27. Wang CL, Lai YH, Huang JC, Nieh TG (2010) Scripta Mater 62:175. doi:10.1016/j.scriptamat.2009.10.021

    Article  CAS  Google Scholar 

  28. Ashby FM: Deformation Maps. http://engineering.darmouth.edu/defmech

  29. Askill J (1970) Tracer diffusion data for metals, alloys and simple oxides. Plenum, New York

    Book  Google Scholar 

  30. Sauvage X, Wilde G, Divinski SV, Horita Z, Valiev RZ (2012) Mater Sci Eng A 540:1. doi:10.1016/j.msea.2012.01.080

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support for this work provided by the Czech Science Foundation under Grant No. P108/11/2260. This work was realized in CEITEC—Central European Institute of Technology with research infrastructure supported by the project CZ.1.05/1.1.00/02.0068 financed from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaclav Sklenicka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sklenicka, V., Kucharova, K., Kvapilova, M. et al. Creep in an electrodeposited nickel. J Mater Sci 48, 4780–4788 (2013). https://doi.org/10.1007/s10853-013-7209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7209-9

Keywords

Navigation