Skip to main content
Log in

Degradation of zirconate materials in ultra-high temperature reverse-flow pyrolysis reactors

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A reverse-flow reactor enables the pyrolysis of hydrocarbons at temperatures up to 2000 °C to high value petrochemical products. Materials in the reactor hot zone, exposed to such extreme temperatures, are also subject to rapid oxidative cycling over a period of several seconds between a regeneration (heat addition) step that is mildly oxidizing and a pyrolysis (cracking) step that is strongly carburizing. This paper addresses the performance of a class of zirconate ceramics such as BaZrO3, SrZrO3, and La2Zr2O7 that have been tested in a laboratory scale reverse-flow reactor and compares the results with thermodynamic predictions. It is observed that zirconate ceramics degrade by decomposition to zirconia and the second oxide, vaporization of the second oxide, and ceramic dusting corrosion of zirconia that involves carbide-oxide inter-conversion and carbon precipitation. The pyrolysis reaction promotes carbon deposition and carburization of zirconia leading to the formation of a non-protective porous carbide layer. The regeneration reaction converts the carbide layer partially back to oxide while also oxidizing away some of the deposited carbon. Repeated cycles of pyrolysis and regeneration steps eventually result in the breakup of the bulk zirconate ceramic structure into powder or dust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Keusenkothen PF, McCoy JN, Hey J, Hershkowitz F (2011) Pyrolysis reactor conversion of hydrocarbon feedstocks into higher value hydrocarbons. US Patent 7,914,667 B2

  2. Chun CM, Hershkowitz F (2011) Advanced materials for regenerative pyrolysis reactors, methods, and reactors using the same. US Patent 7,976,797 B2

  3. Mayers RA (2005) Handbook of petrochemicals production processes. McGraw-Hill, New York, NY

    Google Scholar 

  4. Chun CM, Desai S, Hershkowitz F, Keuthenkothen PF, Mohr GD, Ramanarayanan TA (2012) Int J Appl Ceram Tech. doi:10.1111_j.1744-7402.2012.02848

  5. Chun CM, Desai S, Hershkowitz F, Ramanarayanan TA (2012) J Am Ceram Soc 95(12):3962

    Article  CAS  Google Scholar 

  6. Chun CM, Desai S, Hershkowitz F, Ramanarayanan TA (2012) High Yttria-Zirconia and Yttria ceramics for petrochemical reverse-flow reactor applications (submitted to Int J Appl Ceram Tech)

  7. Vassen R, Cao S, Tietz F, Basu D, Stover D (2000) J Am Ceram Soc 83(8):2023

    Article  CAS  Google Scholar 

  8. Morita Y, Motohashi T, Sugihara S, Yamauchi H (2002) Physica C 378–38:360

    Article  Google Scholar 

  9. Slonimskaya EA, Belyakov AV (2001) Glass Ceram 58(1-2):54

    Article  CAS  Google Scholar 

  10. Nair J, Nair P, Doesburg GBM, Van Ommen JG, Ross JRH, Burggraaf AJ, Mizukami F (1999) J Am Ceram Soc 82(8):2066

    Article  CAS  Google Scholar 

  11. Heuer AH, Chaim R, Lanteri V (1988) In: Somiya S, Yamamoto N, Yanegida H (ed) Advanced in ceramics vol 24A, Science and technology of zirconia III, the american ceramic society. Westerville, OH

  12. Jacobson NS (1989) Thermodynamic properties of some metal oxide-zirconia systems. NASA Technical Memorandum 102351

  13. Odoj R, Hilpert K (1976) Z Phys Chem Weisbaden 102(5-6):191

    Article  CAS  Google Scholar 

  14. Odoj R, Hilpert K (1976) J Nucl Mater 60(2):216

    Article  CAS  Google Scholar 

  15. Brett J, Seigle LL, Berkowitz-Mattuck J, Lement B, Phalen DI (1965) Experimental study of factors controlling the effectiveness of high-temperature protective coatings for tungsten. Ft. Belvoir Defense Technical Information Center

  16. Belov AN, Semenov GA (1980) Inorg Mater 16(12):1513

    Google Scholar 

  17. Chase Jr MW, Davies CA, Downey Jr JR, Journal FD, McDonald RA, Syverud AN (1985) J Phys Chem Ref Data 14(1):927

  18. Landolt-Börnsteink (1999) Thermodynamic properties of inorganic material, Scientific Group Thermodata Europe (SGTE). Springer, Berlin

  19. Barin I (1993) Thermochemical data of pure substances, part I. VCH Verlags Gesellschaft, Weinheim

    Google Scholar 

  20. Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill, New York, NY

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge insights provided by Prof. David Clarke, Harvard University and Prof. Harry Tuller, MIT. We also thank the Evans Analytical Group for their assistance in TEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changmin Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, C., Desai, S., Hershkowitz, F. et al. Degradation of zirconate materials in ultra-high temperature reverse-flow pyrolysis reactors. J Mater Sci 48, 3975–3984 (2013). https://doi.org/10.1007/s10853-013-7206-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7206-z

Keywords

Navigation