Skip to main content
Log in

Features of Production and High-Temperature Oxidation of SHS Ceramics Based on Zirconium Boride and Zirconium Silicide

  • Self-Propagating High-Temperature Synthesis
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

This article is devoted to the investigation into the combustion kinetics and mechanism of reaction mixtures in Zr–Si–B and Zr–B systems formed according to the forced SHS-pressing of compact ceramic materials, as well as to studying their heat resistance. It is shown that dependences of the combustion temperature and rate on the initial temperature (T0) for compositions in the Zr–Si–B system are linear; i.e., staging of chemical reactions of formation of zirconium diboride and disilicide remains invariable with an increase in T0. The values of effective activation energy of SHS process, which evidence the leading role of the reaction interaction of zirconium with boron and silicon in the melt, are calculated. Staging of chemical transformations in the combustion wave of the Zr–Si–B system is investigated: initially the ZrB2 phase is formed by crystallization from the melt, and then the ZrSi2 phase appears with a delay of 0.5 s; unreacted Si crystallizes after 1 s. The phase composition of synthesis products, in which the main component is ZrB2 diboride, and zirconium disilicide, Si, and ZrB12 boride are contained depending on the composition of the reaction charge, is investigated. Compact samples having high hardness and low residual porosity are fabricated according to forced SHS-pressing technology. High-temperature oxidation of SHS samples results in the formation of SiO2–ZrO2–B2O3 oxide films and ZrSiO4 complex oxide on their surface depending on the composition, which serve the effective diffusion barrier and lower the oxidation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sha, J.J., Li, J., Wang, S.H., Wang, Y.C., Zhang, Z.F., and Dai, J.X., Toughening effect of short carbon fibers in the ZrB2–ZrSi2 ceramic composites, Mater. Des., 2015, vol. 75, pp. 160–165.

    Article  Google Scholar 

  2. Paul, A., Jayaseelan, D.D., Venugopal, S., Zapata-Solvas, E., Binner, J., Vaidhyanathan, B., Heaton, A., Brown, P., and Lee, W.E., UHTS composites for hypersonic applications, Am. Ceram. Soc. Bull., 2012, vol. 91, pp. 22–29.

    Google Scholar 

  3. Czelusniak, T., Amorim, F.L., Higa, C.F., and Lohrengel, A., Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering, Int. J. Adv. Manuf. Technol., 2014, vol. 72, pp. 1503–1512.

    Article  Google Scholar 

  4. Chamberlain, A.L., Fahrenholtz, W.G., Hilmas, G.E., and Ellerby, D.T., Highstrength zirconium diboridebased ceramics, J. Am. Ceram. Soc., 2004, vol. 87, pp. 1170–1172.

    Article  Google Scholar 

  5. Sciti, D., Guicciardi, S., and Silvestroni, L., SiC chopped fibers reinforced ZrB2 effect of the sintering aid, Scr. Mater., 2011, vol. 64, pp. 769–772.

    Article  Google Scholar 

  6. Sciti, D., Silvestroni, L., Saccone, G., and Alfano, D., Effect of different sintering aids on thermo-mechanical properties and oxidation of SiC fibers-reinforce ZrB2 composites, Mater. Chem. Phys., 2013, vol. 137, pp. 834–842.

    Article  Google Scholar 

  7. Guo, S.Q., Kagawa, Y., and Nishimura, T., Mechanical behavior of two-step hotpressed ZrB2-based composites with ZrSi2, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 787–794.

    Article  Google Scholar 

  8. Wang, H.L., Wang, C.A., Yao, X.F., and Fang, D.N., Processing and mechanical properties of zirconium diboride-based ceramics prepared by spark plasma sintering, J. Am. Ceram. Soc., 2007, vol. 90, pp. 1992–1997.

    Article  Google Scholar 

  9. Pastor, H., Metallic borides: preparation of solid bodies— sintering methods and properties of solid bodies, in: Boron and Refractory Borides, Matkovich, V.I., Ed., New York: Springer, 1977, pp. 454–493.

    Google Scholar 

  10. Silvestroni, L. and Sciti, D., Densification of ZrB2–TaSi2 and HfB2–TaSi2 ultrahigh-temperature ceramic composites, J. Am. Ceram. Soc., 2011, vol. 94, pp. 1920–1930.

    Article  Google Scholar 

  11. Sciti, D., Guicciardi, S., and Silvestroni, L., Are short Hi-Nicalon SiC fibers a secondary or a toughening phase for ultra-high temperature ceramics, Mater. Des., 2014, vol. 55, pp. 821–829.

    Article  Google Scholar 

  12. Yang, F.Y., Zhang, X.H., Han, J.C., and Du, S.Y., Processing and mechanical properties of short carbon fibers toughened zirconium diboride-based ceramics, Mater. Des., 2008, vol. 29, pp. 1817–1820.

    Article  Google Scholar 

  13. Lin, J., Zhang, X.H., Wang, Z., Han, W.B., and Jin, H., Microstructure and mechanical properties of hot-pressed ZrB2–SiC–ZrO2 ceramics with different sintering temperatures, Mater. Des., 2012, vol. 34, pp. 853–856.

    Article  Google Scholar 

  14. Sha, J.J., Wei, Z.Q., Li, J., Zhang, Z.F., Yang, X.L., Zhang, Y.C., and Dai, J.X., Mechanical properties and toughening mechanism of WC-doped ZrB2–ZrSi2 ceramic composites by hot pressing, Mater. Des., 2014, vol. 62, pp. 199–204.

    Article  Google Scholar 

  15. Sciti, D., Guicciardi, S., and Bellosi, A., Properties of a pressureless-sintered ZrB2–MoSi2 ceramic composite, J. Am. Ceram. Soc., 2006, vol. 7, pp. 2320–2322.

    Google Scholar 

  16. Guo, S.Q., Kagawa, Y., Nishimura, T., and Tanaka, H., Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2 additive, Scr. Mater., 2008, vol. 58, pp. 579–582.

    Article  Google Scholar 

  17. Yu-Lei Zhang, He-Jun Li, Zhi-Xiong Hu, Jin-Cui Ren, and Ke-Zhi Li, Microstructure and oxidation resistance of Si–Mo–B coating for C/SiC coated carbon/carbon composites, Corros. Sci., 2013, vol. 72, pp. 150–155.

    Article  Google Scholar 

  18. Feng, T., Li, H.J., Shi, X.H., Yang, X., Li, Y.X., and Yao, X.Y., Sealing role of B2O3 in MoSi2–CrSi2–Si/B modified coating for C/C composites, Corros. Sci., 2012, vol. 60, pp. 4–9.

    Article  Google Scholar 

  19. Grigoriev, O., Galanov, B., Lavrenko, V., Panasyuk, A., Ivanov, S., Koroteev, A., and Nickel, K., Oxidation of ZrB2–SiC–ZrSi2 ceramics in oxygen, J. Eur. Ceram. Soc., 2010, vol. 30, pp. 2397–2405.

    Article  Google Scholar 

  20. Silvestroni, L., Landi, E., Bejtka, K., Chiodoni, A., and Sciti, D., Oxidation behavior and kinetics of ZrB2 containing SiC chopped fibers, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 4377–4387.

    Article  Google Scholar 

  21. Silvestroni, L., Meriggi, G., and Sciti, D., Oxidation behavior of ZrB2 composites doped with various transition metal silicides, Corros. Sci., 2014, vol. 83, pp. 281–291.

    Article  Google Scholar 

  22. Makarov, A.V., Bagarat’yan, N.V., Zbezhneva, S.G., Aleshko-Ozhevskaya, L.A., and Georgobiani, T.P., Ionization and fragmentation of B2O2 and BOmolecules under electronic blow, Vestn. Mosk. Gos. Univ., Ser. Khim., 2000, vol. 41, no. 4, pp. 227–230.

    Google Scholar 

  23. Eremina, E.N., Kurbatkina, V.V., Levashov, E.A., Rogachev, A.S., and Kochetov, N.A., Obtaining the composite MoB material by means of force SHS compacting with preliminary mechanical activation of Mo–10% B mixture, Chem. Sustain. Develop., 2005, vol. 13, pp. 197–204.

    Google Scholar 

  24. Khanraa, A.K., Pathak, L.C., and Godkhindi, M.M., Double SHS of ZrB2 powder, J. Mater. Proc. Technol., 2008, vol. 202, pp. 386–390.

    Article  Google Scholar 

  25. Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V., Maksimov, M., and Yukhvid, V.I., Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza (Promising Materials and Processes of Self-Propagating High-Temperature Synthesis), Moscow: MISIS, 2011.

    Google Scholar 

  26. Levashov, E.A., Pogozhev, Yu.S., Potanin, A.Yu., Kochetov, N.A., Kovalev, D.Yu., Shvyndina, N.V., and Sviridova, T.A., Self-propagating high-temperature synthesis of advanced ceramics in the Mo–Si–B system: Kinetics and mechanism of combustion and structure formation, Ceram. Int., 2014, vol. 40, pp. 6541–6552.

    Article  Google Scholar 

  27. Rogachev, A.S. and Mukasyan, A.S., Combustion for Materials Synthesis, New York: Taylor and Francis, 2015.

    Google Scholar 

  28. Pogozhev, Yu.S., Potanin, A.Yu., Levashov, E.A., and Kovalev, D.Yu., The features of combustion and structure formation of ceramic materials in the Cr–Al–Si–B system, Ceram. Int., 2014, vol. 40, pp. 16299–16308.

    Article  Google Scholar 

  29. Bertolino, N., Anselmi-Tamburini, U., Maglia, F., Spinolo, G., and Munir, Z.A., Combustion synthesis of Zr–Si intermetallic compounds, J. Alloys Compd., 1999, vol. 288, pp. 238–248.

    Article  Google Scholar 

  30. Levashov, E.A., Kurbatkina, V.V., Rogachev, A.S., Kochetov, N.A., Patsera, E.I., and Sachkova, N.V., Characteristic properties of combustion and structure formation in the Ti–Ta–C system, Russ. J. Non-Ferrous Met., 2008, vol. 49, pp. 404–413.

    Article  Google Scholar 

  31. Patsera, E.I., Levashov, E.A., Kurbatkina, V.V., and Kovalev, D.Yu., Production of ultra-high temperature carbide (Ta, Zr)C by self-propagating high-temperature synthesis of mechanically activated mixtures, Ceram. Int., 2015, vol. 41, pp. 8885–8893.

    Article  Google Scholar 

  32. Yu, Y., Luo, R., Xiang, Q., Zhang, Y., and Wanga, T., Antioxidation properties of a BN/SiC/Si3N4–ZrO2–SiO2 multilayer coating for carbon/carbon composites, Surf. Coat. Technol., 2015, vol. 277, pp. 7–14.

    Article  Google Scholar 

  33. Liu, J., Cao, L.-Y., Huang, J.-F., Xin, Y., Yang, W.-D., Fei, J., and Yao, C.-Y., A ZrSiO4/SiC oxidation protective coating for carbon/carbon composites, Surf. Coat. Technol., 2012, vol. 206, pp. 3270–3274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Iatsyuk.

Additional information

Original Russian Text © I.V. Iatsyuk, Yu.S. Pogozhev, E.A. Levashov, A.V. Novikov, N.A. Kochetov, D.Yu. Kovalev, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya, 2017, No. 1, pp. 29–41.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iatsyuk, I.V., Pogozhev, Y.S., Levashov, E.A. et al. Features of Production and High-Temperature Oxidation of SHS Ceramics Based on Zirconium Boride and Zirconium Silicide. Russ. J. Non-ferrous Metals 59, 311–322 (2018). https://doi.org/10.3103/S1067821218030173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218030173

Keywords

Navigation