Skip to main content
Log in

Magnetocaloric study of monovalent-doped manganites Pr0.6Sr0.4−x Na x MnO3 (x = 0–0.2)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A systematic investigation of structural, magnetic, and magnetocaloric properties is reported for a series of monovalent sodium-doped manganites Pr0.6Sr0.4−x Na x MnO3 (x = 0, 0.05, 0.1, 0.15, and 0.2). Rietveld refinements of the X-ray diffraction patterns show that all powder samples are single-phased and crystallized in the orthorhombic structure with Pnma space group. Magnetic characterization and Arrott plot confirm the second-order phase transition at Curie temperature T C decreasing from 310 K for x = 0 down to 272 K for x = 0.2. Magnetic entropy change is largest for x = 0 reaching 1.95 J kg−1 K−1 at 2 T field. This corresponds to a large relative cooling power of 102 J kg−1 . Magnetic field sensitivity of magnetic entropy change and relative cooling power are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dagotto E (2003) Nanoscale phase separation and colossal magnetoresistance (Springer series in solid state physics, vol 136). Springer, Berlin

    Book  Google Scholar 

  2. Guo ZB, Du YW, Zhu JS, Huang H, Ding WP, Feng D (1997) Phys Rev Lett 78:1142

    Article  CAS  Google Scholar 

  3. Bohigas X, Tejada J, Del Barco E, Zhang XX, Sales M (1998) Appl Phys Lett 73:390

    Article  CAS  Google Scholar 

  4. Gschneidner KA, Pecharsky VK, Tsokol AO (2005) Rep Progr Phys 68:1479

    Article  CAS  Google Scholar 

  5. Raveau B, Maignan A, Caignaert V (1995) J Solid State Chem 117:424

    Article  CAS  Google Scholar 

  6. Tomioka Y, Asamitsu A, Moritomo Y, Kowahara H, Tokura Y (1995) Phys Rev Lett 74:5108

    Article  Google Scholar 

  7. Zener C (1951) Phys Rev 82:403

    Article  CAS  Google Scholar 

  8. Radaelli PG, Marezio M, Hwang HY, Cheong SW (1996) J Solid State Chem 122:444

    Article  CAS  Google Scholar 

  9. Rodriguez-Martinez LM, Attfield JP (1996) Phys Rev B 54:R15622

    Article  CAS  Google Scholar 

  10. Rodriguez-Martinez LM, Attfield JP (1998) Phys Rev B 58:2426

    Article  CAS  Google Scholar 

  11. Suresh Kumar V, Mahendiran R (2010) Solid State Commun 150:1445

    Article  CAS  Google Scholar 

  12. Kolat VS, Izgi T, Kaya AO, Bayri N, Gencer H, Atalay S (2010) J Magn Magn Mater 322:427

    Article  CAS  Google Scholar 

  13. Roessler S, Nair HS, Roessler UK, Kumar CMN, Elizabeth S, Wirth S (2011) Phys Rev B 84:184422

    Article  Google Scholar 

  14. Das S, Dey TK (2007) J Phys D Appl Phys 40:1855

    Article  CAS  Google Scholar 

  15. Debnath JC, Zeng R, Kim JH, Dou SX (2011) J Alloys Compd 509:3699

    Article  CAS  Google Scholar 

  16. Thaljaoui R, Boujelben W, Pękała M, Pociecha D, Szydłowska J, Cheikhrouhou A (2012) J Alloys Compd 530:138

    Article  CAS  Google Scholar 

  17. Thaljaoui R, Boujelben W, Pękała M, Szydłowska J, Cheikhrouhou A (2012) J Alloys Compd 526:98

    Article  CAS  Google Scholar 

  18. Thaljaoui R, Boujelben W, Pękała M, Pękała M, Mucha J, Cheikhrouhou A (2013) J Alloy Compd (in press)

  19. Rietveld HM (1969) J Appl Cryst 2:65

    Article  CAS  Google Scholar 

  20. Roisnel T, Rodriguez-Carvajal J (2003) Computer program FULLPROF. LLB-LCSIM, Rennes

    Google Scholar 

  21. Shanon RD (1976) Acta Cryst A 32:751

    Article  Google Scholar 

  22. Knížek K, Jirák Z, Pollert E, Zounová F, Vratislav S (1992) J Solid State Chem 100:292

    Article  Google Scholar 

  23. Koubaa WC, Koubaa M, Cheikhrouhou A (2011) J Alloys Compd 509:4363

    Article  Google Scholar 

  24. Boujelben W, Ellouze M, Cheikh-Rouhou A, Pierre J, Cai Q, Yelon WB, Shimizu K, Dubourdieu C (2002) J Alloy Compd 334:1

    Article  CAS  Google Scholar 

  25. Banerjee SK (1964) Phys Lett 12:67

    Google Scholar 

  26. Fan J, Ling L, Hong Bo, Zhang L, Pi LI, Zhang Y (2010) Phys Rev B 81:144426

    Article  Google Scholar 

  27. Stanley HE (1971) Introduction to phase transitions and critical phenomena. Oxford University Press, New York

    Google Scholar 

  28. Coey JMD (2010) Magnetism and magnetic materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  29. Guida R, Zinn-Justin J (1997) Nucl Phys B 489:626

    Article  Google Scholar 

  30. Koubaa M, Cheikhrouhou-Koubaa W, Cheikhrouhou A (2009) J Alloys Compd 473:5

    Article  CAS  Google Scholar 

  31. Zemni S, Baazaoui M, Dhahri Ja, Vincent H, Oumezzine M (2009) Mater Lett 63:489

    Article  CAS  Google Scholar 

  32. Morrish AH (1965) The physical principles of magnetism. Wiley, New York

    Google Scholar 

  33. Patra M, Majumdar S, Giri S, Iles GN, Chaterji T (2010) J Appl Phys 107:076101

    Article  Google Scholar 

  34. Phan MH, Peng HX (2005) J Appl Phys 97:10M306

    Article  Google Scholar 

  35. Zhang YD, Lampen PJ, Phan T-L, Yu S-C, Srikanth H, Phan M-H (2012) J Appl Phys 111:063918

    Article  Google Scholar 

  36. Franco V, Caballero-Flores R, Conde A, Dong QY, Zhang HW (2009) J Magn Magn Mater 321:1115

    Article  CAS  Google Scholar 

  37. Oesterreicher H, Parker FT (1984) J Appl Phys 55:4334

    Article  CAS  Google Scholar 

  38. Pękała M (2010) J Appl Phys 108:113913

    Article  Google Scholar 

  39. Franco V, Blazquez JS, Conde A (2003) Appl Phys Lett 89:222512

    Article  Google Scholar 

  40. Szymczak R, Czepelak M, Kolano R, Kolano-Burian A, Krzymanska B, Szymczak H (2008) J Mater Sci 43:1734. doi:10.1007/s10853-007-2400-5

    Article  CAS  Google Scholar 

  41. Caballero-Flores R, Franco V, Conde A, Dong QY, Zhang HW (2010) J Magn Magn Mater 322:804

    Article  CAS  Google Scholar 

  42. Gschneidner KA, Pecharsky VK (2000) Annu Rev Mater Sci 30:387

    Article  CAS  Google Scholar 

  43. Franco V, Blázquez JS, Ingale B, Conde A (2012) Annu Rev Mater Res 42:305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Helpful discussions with Prof. V. Franco (Sevilla Un.) are kindly acknowledged. This study was supported by the Tunisian Ministry of Higher Education and Scientific Research and the Ministry of Science and Higher Education of Poland. Authors are grateful to Dr. hab. M. Donten for kindly providing electron micrographs and composition analysis. The SEM images were obtained using the equipment purchased within CePT Project No.: POIG.02.02.00-14-024/08-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thaljaoui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaljaoui, R., Boujelben, W., Pękała, K. et al. Magnetocaloric study of monovalent-doped manganites Pr0.6Sr0.4−x Na x MnO3 (x = 0–0.2). J Mater Sci 48, 3894–3903 (2013). https://doi.org/10.1007/s10853-013-7191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7191-2

Keywords

Navigation