Skip to main content
Log in

Mechanical properties and microstructure evolution in ultrafine-grained AZ31 alloy processed by severe plastic deformation

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Commercial MgAlZn alloy AZ31 was processed by two techniques of severe plastic deformation (SPD)—extrusion followed by equal channel angular pressing (EX-ECAP), and high pressure torsion (HPT). Processing by ECAP was conducted at elevated temperature of 180 °C for 1–12 passes following route BC. HPT was applied at room temperature, and the specimens of the diameter of 19 mm with different number of turns (N = ¼ − 15) were prepared. Mechanical properties and grain fragmentation with strain due to EX-ECAP and HPT were investigated by Vickers microhardness measurements and transmission electron microscopy, respectively. Variations in dislocation density were investigated by positron annihilation spectroscopy. Differences in microhardness, grain refinement and dislocation density evolution resulting from principal differences of straining were found in the specimens. EX-ECAP resulted in homogeneous microstructure throughout the specimen's cross section as early as after four passes. On the other hand, laterally inhomogeneous microstructure with gradual reduction of grain sizes from the centre towards the periphery of the disk was observed in specimens after HPT. This microstructure and microhardness inhomogeneities were continuously smeared out and almost homogeneous ultrafine-grained structure was observed in specimen subjected to 15 HPT turns. Variations in mechanical properties and dislocation density evolution were compared in conditions corresponding to the same equivalent strain imposed by both techniques of SPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gupta M, Sharon NML (2011) Magnesium, magnesium alloys, and magnesium composites. Wiley, Hoboken, p 1

    Book  Google Scholar 

  2. Koch CC (2009) In: Zehetbauer MJ, Zhu YT (ed) Bulk nanostructured materials, Wiley, Weinheim, p 9

  3. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  4. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  5. Kim HS (2001) J Mater Proc Tech 113:617

    Article  Google Scholar 

  6. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579

    Article  CAS  Google Scholar 

  7. Varyutkhin VN, Beygelzimer Y, Synkov S, Orlov D (2006) Mater Sci Forum 503–504:335

    Article  Google Scholar 

  8. Yang X, Okabe Y, Miura H, Sakai T (2012) J Mat Sci 47:2823. doi:10.1007/s10853-011-6111-6

    Article  CAS  Google Scholar 

  9. Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) J Mater Res 11:1880

    Article  CAS  Google Scholar 

  10. Yoon EY, Lee DJ, Kim T-S, Chae HJ, Jenei P, Gubicza J, Ungár T, Janeček M, Vrátná J, Lee S, Kim HS (2012) J Mat Sci 47:7117. doi:10.1007/s10853-012-6408-0

    Article  CAS  Google Scholar 

  11. Zhilyaev AP, Nurislamova GV, Kim B-K, Baro MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753

    Article  CAS  Google Scholar 

  12. Zhilyaev AP, Oh-ishi K, Langdon TG, McNelley TR (2005) Mater Sci Eng A410–411:277

    Google Scholar 

  13. Vrátná J, Janeček M, Stráský J, Kim HS, Yoon E-Y (2011) In: Sillekens WH, Agnew SR, Neelameggham NR, Mathaudhu SN (ed) Magnesium technology 2011, Wiley, New York, p 589

  14. Harai Y, Ito Y, Horita Z (2008) Scripta Mater 58:469

    Article  CAS  Google Scholar 

  15. Zhilyaev AP, Langdon TG (2012) J Mat Sci 47:7888. doi:10.1007/s10853-012-6429-8

    Article  CAS  Google Scholar 

  16. Bonarski BJ, Schafler E, Mingler B, Skrotzki W, Mikulowski B, Zehetbauer MJ (2008) J Mat Sci 43:7513. doi:10.1007/s10853-008-2794-8

    Article  CAS  Google Scholar 

  17. Joo SH, Yoon SC, Lee CS, Nam DH, Hong SH, Kim HS (2010) J Mat Sci 45:4652. doi:10.1007/s10853-010-4382-y

    Article  CAS  Google Scholar 

  18. Jenei P, Yoon EY, Gubicza J, Kim HS, Lábár J, Ungár T (2011) Mater Sci Eng A 528:4690

    Article  Google Scholar 

  19. Song Y, Yoon EY, Lee DJ, Lee JH, Kim HS (2011) Mat Sci Eng A 528:4840

    Article  Google Scholar 

  20. Bečvář F, Čížek J, Lešták L, Novotný I, Procházka I, Šebesta F (2000) Nucl Instrum Method A 443:557

    Article  Google Scholar 

  21. Procházka I, Novotný I, Bečvář F (1997) Mater Sci Forum 255–257:772

    Article  Google Scholar 

  22. DEFORM software, Scientific Forming Technologies Corp., Columbus, OH (2007)

  23. Tóth LS, Molinari A, Estrin Y (2002) J Eng Mater Technol 124:71

    Article  Google Scholar 

  24. Baik SC, Estrin Y, Kim HS, Hellmig RJ (2003) Mater Sci Eng A 351:86

    Article  Google Scholar 

  25. Čížek J, Procházka I, Smola B, Stulíková I, Kužel R, Matěj Z, Cherkaska V (2006) Phys Stat Sol (A) 203:466

    Article  Google Scholar 

  26. Čížek J, Procházka I, Smola B, Stulíková I, Očenášek V (2007) J Alloys Comp 430:92

    Article  Google Scholar 

  27. West R (1979) In: Hautojärvi P (ed) Positrons in Solids Springer, Berlin, p 89

  28. Janeček M, Čížek J, Gubicza J, Vrátná J (2012) J Mat Sci 47:7860. doi:10.1007/s10853-012-6538-4

    Article  Google Scholar 

  29. Song Y, Yoon EY, Lee DJ, Lee JH, Kim HS (2011) Mater Sci Eng A 528:4840

    Article  Google Scholar 

  30. Janeček M, Yi S, Král R, Vrátná J, Kainer KU (2010) J Mater Sci 45:4665. doi:10.1007/s10853-010-4675-1

    Article  Google Scholar 

  31. Lee DJ, Yoon EY, Park LJ, Kim HS (2012) Scripta Mater 67:384

    Article  CAS  Google Scholar 

  32. Chen Y, Wang Q, Peng J, Zhai C, Ding W (2007) J Mat Proc Tech 182:281

    Article  CAS  Google Scholar 

  33. Wang YB, Louie M, Cao Y, Liao XZ, Li HJ, Ringer SP, Zhu YT (2010) Scripta Mater 62:214

    Article  CAS  Google Scholar 

  34. Von Mises R (1928) Angew Z Math Mech 8:161

    Article  Google Scholar 

  35. Hirth JP, Lothe J (1982) Theory of Dislocations, 2nd edn. Wiley, New York, p 277

    Google Scholar 

  36. Gubicza J, Chinh NQ, Lábár JL, Hegedűs Z, Langdon TG (2010) Mater Sci Eng A 527:752

    Article  Google Scholar 

  37. Sastry DH, Prasad YVRK, Vasu KI (1969) Scripta Mater 3:923

    Article  Google Scholar 

  38. Gubicza J, Chinh NQ, Dobatkin SV, Khosravi E, Langdon TG (2011) Key Eng Mater 465:195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Czech Grant Agency (GACR) under the Grant 106/09/0482. J. Vrátná acknowledges the finacial support extended by GAUK 530712/2012 and SVV 2012-265303. J. Čížek acknowledges the support from GACR under the grant P108/10/064 and H.S. Kim acknowledges the financial support from POSCO by the project of mechanical joining for Mg alloys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Janeček.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vrátná, J., Janeček, M., Čížek, J. et al. Mechanical properties and microstructure evolution in ultrafine-grained AZ31 alloy processed by severe plastic deformation. J Mater Sci 48, 4705–4712 (2013). https://doi.org/10.1007/s10853-013-7151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7151-x

Keywords

Navigation