Skip to main content

Advertisement

Log in

Structure and mechanical properties of nanostructured Al–Mg alloys processed by severe plastic deformation

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Structural features, microhardness, and mechanical properties of three binary Al–Mg alloys and a commercial AA5182 alloy subjected to high pressure torsion at room temperature were comparatively investigated using transmission electron microscopy, high-resolution transmission electron microscopy, and quantitative X-ray diffraction measurements. Average grain sizes measured by dark-field images are in the range 71–265 nm while the sizes of coherent domains decreased tremendously from 86 to 46 nm as the Mg content increased from 0.5 to 4.1 wt%. The average dislocation density in the deformed alloys is in the range 0.37 × 1014–4.97 × 1014 m−2. Both the microhardness and tensile strength of all the deformed alloys increased dramatically as compared to the undeformed counterparts. The yield strength with values ranging from 390 to 690 MPa in the deformed alloys is typically five to seven times higher than that of the same undeformed alloys. Calculations based on the Hall–Petch and Taylor equations suggest that the strengthening mechanisms contributing to the very high strength may depend not only on the conventional mechanisms of grain size strengthening and dislocation strengthening, but also on the additional mechanisms related to the contributions from stacking faults and nanotwins, and nonequilibrium GBs observed in the deformed alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sabirov I, Murashkin MYu, Valiev RZ (2013) Mater Sci Eng, A 560:1

    Article  CAS  Google Scholar 

  2. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  3. Liu MP, Roven HJ, Yu YD (2008) Intern J Mater Res 98:184

    Google Scholar 

  4. Liu MP, Roven HJ (2007) Appl Phys Lett 90:083115

    Article  Google Scholar 

  5. Liu MP, Roven HJ, Yu YD, Werenskiold JC (2008) Mater Sci Eng, A 483–484:59

    Google Scholar 

  6. Liddicoat PV, Liao XZ, Zhao YH, Zhu YT, Murashkin MY, Lavernia EJ, Valiev RZ, Ringer SP (2010) Nat Commun 1:63

    Article  Google Scholar 

  7. Hu LJ, Zhao SJ (2012) J Mater Sci 47:6872

    Article  CAS  Google Scholar 

  8. Zhu T, Li J (2010) Prog Mater Sci 55:710

    Article  Google Scholar 

  9. Suresh S, Li J (2008) Nature 456:716

    Article  CAS  Google Scholar 

  10. Lu L, Chen X, Huang X, Lu K (2009) Science 323:607

    Article  CAS  Google Scholar 

  11. Liu XY, Adams JB (1998) Acta Mater 46:3467

    Article  CAS  Google Scholar 

  12. Liu XY, Ohotnicky PP, Adams JB, Rohrer CL, Hyland RW Jr (1997) Surf Sci 373:357

    Article  Google Scholar 

  13. Zhang JW, Starink MJ, Gao N, Zhou WL (2011) Mater Sci Eng, A 528:2093

    Article  Google Scholar 

  14. Youssef KM, Scattergood RO, Murty KL, Koch CC (2006) Scr Mater 54:251

    Article  CAS  Google Scholar 

  15. Liu MP, Roven HJ, Liu XT, Murashkin M, Valiev RZ, Ungár T, Balogh L (2010) J Mater Sci 45:4659

    Article  CAS  Google Scholar 

  16. Liu MP, Roven HJ, Murashkin M, Valiev RZ (2009) Mater Sci Eng, A 503:122

    Article  Google Scholar 

  17. Zhou F, Liao XZ, Zhu YT, Dallek S, Lavernia EJ (2003) Acta Mater 51:2777

    Article  CAS  Google Scholar 

  18. Kovács Zs, Chinh NQ, Lendvai J, Horita Z, Langdon TG (2002) Mater Sci Forum 396–402:1073

    Article  Google Scholar 

  19. Ungár T (2007) J Mater Sci 42:1584

    Article  Google Scholar 

  20. Zhao YH, Horita Z, Langdon TG, Zhu YT (2008) Mater Sci Eng, A 474:342

    Article  Google Scholar 

  21. Murashkin M, Kil’mametov AR, Valiev RZ (2008) Phys Met Metall 106:90

    Article  Google Scholar 

  22. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  23. Gubicza J, Chinh NQ, Krállics Gy, Schiller I, Ungár T (2006) Curr Appl Phys 6:194

    Article  Google Scholar 

  24. Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT (2004) Acta Mater 52:4589

    Article  CAS  Google Scholar 

  25. Gutierrez-Urrutia I, Munoz-Morris MA, Morris DG (2006) J Mater Res 21:329

    Article  CAS  Google Scholar 

  26. Shanmugasundaram T, Heilmaier M, Murty BS, Subramanya Sarma V (2010) Mater Sci Eng, A 527:7821

    Article  Google Scholar 

  27. Chandler HD, Bee JV (1987) Acta Metall 35:2503

    Article  CAS  Google Scholar 

  28. Olmsted DL, Hector LG Jr, Curtin WA (2006) J Mech Phys Solids 54:1763

    Article  CAS  Google Scholar 

  29. Valiev RZ, Gertsman VY, Kaibyshev OA (1986) Phys Status Solidi A 97:11

    Article  CAS  Google Scholar 

  30. J. Y. Huang JY, Y. T. Zhu YT, H. Jiang H, T. C. Lowe TC (2001) Acta Mater 49:1497

    Article  Google Scholar 

  31. Valiev RZ, Enikeev NA, Langdon TG (2011) Kovove Mater 49:1

    CAS  Google Scholar 

  32. Liu MP, Roven HJ, Ungár T, Balogh L, Murashkin M, Valiev RZ (2008) Mater Sci Forum 584–586:528

    Article  Google Scholar 

  33. Valiev RZ, Enikeev NA, MYu Murashkin, Kazykhanov VU, Sauvage X (2010) Scr Mater 63:949

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant 50971087), the Basic Research Program (Natural Science Foundation) of Jiangsu Province (grant BK2012715), the Senior Talent Research Foundation of Jiangsu University (grant 11JDG070), and the Research Council of Norway under the NEW Light Metals of the Strategic Area Materials (grant 10371800). The authors also want to acknowledge the assistance of Dr. Lilya Kurmanaeva (Forschung Center of Karlsruhe, Germany) for doing the tensile testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manping P. Liu or Hans J. Roven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M.P., Roven, H.J., Murashkin, M.Y. et al. Structure and mechanical properties of nanostructured Al–Mg alloys processed by severe plastic deformation. J Mater Sci 48, 4681–4688 (2013). https://doi.org/10.1007/s10853-012-7133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7133-4

Keywords

Navigation