Skip to main content
Log in

Stability of the ultrafine-grained microstructure in silver processed by ECAP and HPT

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The high-temperature thermal stability of the ultrafine-grained (UFG) microstructures in low stacking fault energy silver was studied by differential scanning calorimetry (DSC). The UFG microstructures were achieved by equal-channel angular pressing (ECAP) and high-pressure torsion (HPT) at room temperature (RT). The defect structure in the as-processed samples was examined by electron microscopy and X-ray line profile analysis. The stored energy calculated from the defect densities was compared to the heat released during DSC. The sum of the energies stored in grain boundaries and dislocations in the ECAP-processed samples agreed with the heat released experimentally within the experimental error. The temperature of the DSC peak maximum decreased while the released heat increased with increasing numbers of ECAP passes. The released heat for the specimen processed by one revolution of HPT was much smaller than after 4–8 passes of ECAP despite the 2 times larger dislocation density measured by X-ray line profile analysis. This dichotomy was caused by the heterogeneous sandwich-like microstructure of the HPT-processed disk: about 175 μm wide surface layers on both sides of the disk exhibited a UFG microstructure while the internal part was recrystallized, thereby yielding a relatively small released heat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Segal VM (1999) Mater Sci Eng A 271:322

    Article  Google Scholar 

  2. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  3. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  4. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  5. Cao WQ, Godfrey A, Liu W, Liu Q (2003) Mater Sci Eng A360:420

    CAS  Google Scholar 

  6. Molodova X, Gottstein G, Winning M, Hellmig RJ (2007) Mater Sci Eng A 460–461:204

    Google Scholar 

  7. Cao WQ, Gu CF, Pereloma EV, Davies CHJ (2008) Mater Sci Eng A 492:74

    Article  Google Scholar 

  8. Zhilyaev AP, Nurislamova GV, Surinach S, Baró MD, Langdon TG (2002) Mater Phys Mech 5:23

    CAS  Google Scholar 

  9. Gubicza J, Dobatkin SV, Khosravi E, Kuznetsov AA, Lábár LJ (2011) Mater Sci Eng A 528:1828

    Article  Google Scholar 

  10. Gubicza J, Nam NH, Balogh L, Hellmig RJ, Stolyarov VV, Estrin Y, Ungár T (2004) J Alloys Compd 378:248

    Article  CAS  Google Scholar 

  11. Gubicza J, Balogh L, Hellmig RJ, Estrin Y, Ungár T (2005) Mater Sci Eng A 400–401:334

    Google Scholar 

  12. Huang YK, Menovsky AA, de Boer FR (1993) Nanostruct Mater 2:587

    Article  CAS  Google Scholar 

  13. Kumpmann A, Günther B, Kunze H-D (1993) Mater Sci Eng A 168:165

    Article  Google Scholar 

  14. Zhilyaev AP, Nurislamova GV, Valiev RZ, Baro MD, Langdon TG (2002) Metall Mater Trans A 33:1865

    Article  Google Scholar 

  15. Cizek J, Prochazka I, Cieslar M, Kuzel R, Kuriplach J, Chmelik F, Stulikova I, Becvar F, Melikhova O (2002) Phys Rev B 65:094106

    Article  Google Scholar 

  16. Zhilyaev AP, Gubicza J, Nurislamova G, Révész Á, Suriñach S, Baró MD, Ungár T (2003) Phys Stat Sol A 198:263

    Article  CAS  Google Scholar 

  17. Zhilyaev AP, Kim B-K, Szpunar JA, Baro MD, Langdon TG (2005) Mater Sci Eng A 391:377

    Article  Google Scholar 

  18. Lugo N, Llorca N, Sunol JJ, Cabrera JM (2010) J Mater Sci 45:2264

    Article  CAS  Google Scholar 

  19. Hegedűs Z, Gubicza J, Kawasaki M, Chinh NQ, Süvegh K, Fogarassy Z, Langdon TG (2013) J Mater Sci 48:1675

    Article  Google Scholar 

  20. Tjong SC, Chen H (2004) Mater Sci Eng R 45:1

    Article  Google Scholar 

  21. Kuo C-M, Lin C-S (2007) Scr Mater 57:667

    Article  CAS  Google Scholar 

  22. Setman D, Schafler E, Korznikova E, Zehetbauer MJ (2008) Mater Sci Eng A 493:116

    Article  Google Scholar 

  23. Setman D, Kerber MB, Schafler E, Zehetbauer MJ (2010) Metall Mater Trans A 41:810

    Article  Google Scholar 

  24. Wang G, Wu SD, Zuo L, Esling C, Wang ZG, Li GY (2003) Mater Sci Eng A 346:83

    Article  Google Scholar 

  25. Estrin Y, Isaev NV, Lubenets SV, Malykhin SV, Pugachov AT, Pustovalov VV, Reshetnyak EN, Fomenko VS, Fomenko LS, Shumilin SE, Janecek M, Hellmig RJ (2006) Acta Mater 54:5581

    Article  CAS  Google Scholar 

  26. Matsunaga M, Horita Z (2009) Mater Trans 50:1633

    Article  CAS  Google Scholar 

  27. Gubicza J, Chinh NQ, Lábár LJ, Hegedűs Z, Langdon TG (2010) Mater Sci Eng A 527:752

    Article  Google Scholar 

  28. Hegedűs Z, Gubicza J, Kawasaki M, Chinh NQ, Fogarassy Z, Langdon TG (2011) Mater Sci Eng A 528:8694

    Article  Google Scholar 

  29. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328

    Article  Google Scholar 

  30. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143

    Article  CAS  Google Scholar 

  31. Ribárik G, Gubicza J, Ungár T (2004) Mater Sci Eng A 387–389:343

    Google Scholar 

  32. Balogh L, Ribárik G, Ungár T (2006) J Appl Phys 100:023512

    Article  Google Scholar 

  33. Schafler E, Steiner G, Korznikova E, Kerber M, Zehetbauer MJ (2005) Mater Sci Eng A 410–411:169

    Google Scholar 

  34. Hirth JP, Lothe J (1982) Theory of dislocations. Wiley, New York

    Google Scholar 

  35. Murr LE (1975) Interfacial phenomena in metals and alloys. Addison Wesley, Reading

    Google Scholar 

  36. Gubicza J, Chinh NQ, Lábár LJ, Hegedűs Z, Langdon TG (2009) J Mater Sci 44:1656

    Article  CAS  Google Scholar 

  37. Müllner P, Solenthaler C (1997) Mater Sci Eng A 230:107

    Article  Google Scholar 

  38. Zhu YT, Wu XL, Liao XZ, Narayan J, Mathaudhu SN, Kecskés LJ (2009) Appl Phys Lett 95:031909

    Article  Google Scholar 

  39. Liddicoat PV, Liao X-Z, Zhao Y, Zhu Y, Murashkin MY, Lavernia EJ, Valiev RZ, Ringer SP (2010) Nat Commun 1:63

    Article  Google Scholar 

  40. Dalla Torre F, Lapovok R, Sandlin J, Thomson PF, Davies CHJ, Pereloma EV (2004) Acta Mater 52:4819

    Article  CAS  Google Scholar 

  41. Gubicza J, Chinh NQ, Lábár LJ, Hegedűs Z, Szommer P, Tichy G, Langdon TG (2008) J Mater Sci 43:5672

    Article  CAS  Google Scholar 

  42. Mencik J, Swain MV (1995) J Mater Res 10:1491

    Article  CAS  Google Scholar 

  43. Li H, Bradt RC (1993) J Mater Sci 28:917

    Article  CAS  Google Scholar 

  44. Nix WD, Gao H (1998) J Mech Phys Solids 46:411

    Article  CAS  Google Scholar 

  45. Jeong HJ, Yoon EY, Lee DJ, Kim NJ, Lee S, Kim HS (2012) J Mater Sci 47:7828

    Article  CAS  Google Scholar 

  46. Sakai G, Nakamura K, Horita Z, Langdon TG (2005) Mater Sci Eng A 406:268

    Article  Google Scholar 

  47. Figueiredo RB, Aguilar MTP, Cetlin PR, Langdon TG (2011) Metall Mater Trans A 42A:3013

    Article  Google Scholar 

  48. Figueiredo RB, Langdon TG (2011) Mater Sci Eng A 528:4500

    Article  Google Scholar 

  49. Kawasaki M, Figueiredo RB, Langdon TG (2012) J Mater Sci 47:7719

    Article  CAS  Google Scholar 

  50. Geist D, Rentenberger C, Karnthaler HP (2011) Acta Mater 59:4578

    Article  CAS  Google Scholar 

  51. Figueiredo RB, Aguilar MTP, Cetlin PR, Langdon TG (2012) J Mater Sci 47:7807

    Article  CAS  Google Scholar 

  52. Kawasaki M, Figueiredo RB, Langdon TG (2011) Acta Mater 59:308

    Article  CAS  Google Scholar 

  53. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Oxford

    Google Scholar 

  54. Wolf D (1984) Acta Metall 32:735

    Article  CAS  Google Scholar 

  55. Kawasaki M, Horita Z, Langdon TG (2009) Mater Sci Eng A 524:143

    Article  Google Scholar 

  56. An XH, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2010) Scr Mater 63:560

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Hungarian Scientific Research Fund, OTKA, Grant No. K-81360, in part by the National Science Foundation of the United States under Grant No. DMR-1160966 (MK and TGL) and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS (TGL). The authors thank Ms. Noémi Szász for preparation of the TEM samples as well as Dr. Zoltán Dankházi, Dr. Károly Havancsák and Mr. Gábor Varga for performing SEM/EBSD experiments. The help of Mr. Péter Szommer in nanohardness experiments is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenő Gubicza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegedűs, Z., Gubicza, J., Kawasaki, M. et al. Stability of the ultrafine-grained microstructure in silver processed by ECAP and HPT. J Mater Sci 48, 4637–4645 (2013). https://doi.org/10.1007/s10853-012-7124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7124-5

Keywords

Navigation