Skip to main content
Log in

Hardness and microstructure of interstitial free steels in the early stage of high-pressure torsion

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hardness and microstructure distributions in interstitial free (IF) steel disks processed via the high-pressure torsion (HPT) process with an early stage (up to 1 turn) are investigated using experimental and simulation approaches. The results indicate that the deformation in the HPT-processed IF steel disk is inhomogeneous, providing almost linearly increasing hardness from the center to the edge regions. In particular, near the surface of the disk is a soft region that shrinks with increasing numbers of revolutions. Compared with the compression-only disks by the HPT die, there is a hardness hill in the center region of the HPT-processed disk. The hardness distributions in the HPT disks indicate that the deformation proceeds gradually from the edge to the center with the degree of revolutions. In addition, as the degree of revolutions increases, the strain in the center region increases and the plastic deformation becomes uniform along the radial direction. The finite element analyses strongly support the conclusions of the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim HS, Estrin Y (2001) Appl Phys Lett 79:4115

    Article  CAS  Google Scholar 

  2. Liu J, Cui H, Zhou X, Wu X, Zhang J (2012) Met Mater Int 18:121

    Article  Google Scholar 

  3. Kim HS, Suryanarayana C, Kim SJ (1998) Powder Metall 41:217

    Google Scholar 

  4. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58:33

    Article  Google Scholar 

  5. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  6. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579

    Article  CAS  Google Scholar 

  7. Latypov MI, Alexandrov IV, Beygelzimer YE, Lee S, Kim HS (2012) Comput Mater Sci 60:194

    Article  CAS  Google Scholar 

  8. Zhilyaev AP, Oh-ishi K, Langdon TG, McNelley TR (2005) Mater Sci Eng A410–411:277

    Google Scholar 

  9. Edalati K, Fujioka T, Horita Z (2008) Mater Sci Eng A497:168

    CAS  Google Scholar 

  10. Figueiredo RB, Aguilar MT, PauloR Cetlin, Langdon TG (2011) Metall Mater Trans 42A:3013

    Article  Google Scholar 

  11. Hohenwarter A, Bachmaier A, Gludovatz B, Scheriau S, Pippan R (2009) Int J Mater Res 100:1653

    Article  CAS  Google Scholar 

  12. Bayramoglu S, Gür CH, Alexandrov IV, Abramova MM (2012) Mater Sci Eng A527:927

    Google Scholar 

  13. Kim HS, Ryu WS, Janecek M, Baik SC, Estrin Y (2005) Adv Eng Mater 7:43

    Article  CAS  Google Scholar 

  14. Hadzima B, Janecek M, Estrin Y, Kim HS (2007) Mater Sci Eng A462:243

    CAS  Google Scholar 

  15. Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Mater Sci Eng A387–389:809

    Google Scholar 

  16. Song Y, Yoon EY, Lee DJ, Lee JH, Kim HS (2011) Mater Sci Eng A528:4840

    CAS  Google Scholar 

  17. Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203

    Article  CAS  Google Scholar 

  18. Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solid 56:1186

    Article  CAS  Google Scholar 

  19. Hebesberger T, Stuwe HP, Vorhauer A, Wetscher F, Pippan R (2005) Acta Mater 53:393

    Article  CAS  Google Scholar 

  20. Cao Y, Wang YB, Alhajeri SN, Liao XZ, Zheng WL, Ringer SP, Langdon TG, Zhu YT (2010) J Mater Sci 45:765. doi:10.1007/s10853-009-3998-2

    Article  CAS  Google Scholar 

  21. Vorhauer A, Pippan R (2004) Scr Mater 51:921

    Article  CAS  Google Scholar 

  22. Kim HS (2001) J Mater Proc Technol 113:617

    Article  Google Scholar 

  23. Yoon SC, Horita Z, Kim HS (2008) J Mater Proc Technol 201:32

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Key Laboratory of Functional Crystals and Laser Technology TIPC, CAS, and Graduate Innovative program of Shandong Province (SDYY11079). NSFC (5100 1111), Program of “Twelfth Five-Year” National Science and Technology Support Plan (2011BAD12B02). HSK acknowledges that this study was supported by a grant from the Fundamental R&D Program for Core Technology of Materials (100372751-55551) funded by the Ministry of Knowledge Economy, Korea. The simulation was supported by grant No. KSC-2012-C2-09 from Korea Institute of Science and Technology Information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Wang, W., Gao, D. et al. Hardness and microstructure of interstitial free steels in the early stage of high-pressure torsion. J Mater Sci 48, 4698–4704 (2013). https://doi.org/10.1007/s10853-012-7031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7031-9

Keywords

Navigation