Skip to main content
Log in

Graphene-reinforced epoxy resin with enhanced atomic oxygen erosion resistance

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Atomic oxygen (AO) is a dominant component of the low earth orbit and can erode most spacecraft material. We demonstrated the application of graphene to enhance AO erosion resistance of spacecraft polymers. Graphene-reinforced epoxy resin nanocomposites were prepared by solidification of epoxy resin in solution with dispersed graphene flakes and their AO erosion resistance was investigated in a plasma-type ground-based AO effects simulation facility. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. Results based on erosion kinetics revealed that a 46 % decrease in mass loss and a 47 % decrease in erosion yield were achieved by addition of only 0.5 wt% of graphene. Further analysis of the surface morphology and composition showed that the graphene nanoflakes could serve as barriers to protect underneath from AO erosion. Thus, this approach provides a novel route for improving durability and reliability of spacecraft material, especially polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Polymer 52:4001

    Article  CAS  Google Scholar 

  2. Woo RC, Chen Y, Zhu H, Li J, Kim J, Leuing CY (2007) Compos Sci Technol 67:3448

    Article  CAS  Google Scholar 

  3. Wojtoniszak M, Zielinska B, Chen X, Kalenczuk RJ, Borowiak-Palen E (2012) J Mater Sci 47:3185. doi:10.1007/s10853-011-6153-9

    Article  CAS  Google Scholar 

  4. Li B, Zhong W (2011) J Mater Sci 46:5595. doi:10.1007/s10853-011-5572-y

    Article  CAS  Google Scholar 

  5. Jang BZ, Zhamu A (2008) J Mater Sci 43:5092. doi:10.1007/s10853-008-2755-2

    Article  CAS  Google Scholar 

  6. Bunch JS, Verbridge SS, Alden JS, Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Nano Lett 8(8):2458

    Article  CAS  Google Scholar 

  7. Leenaerts O, Partoens B, Peeters FM (2008) Appl Phys Lett 93:193107

    Article  Google Scholar 

  8. Vinogradov NA, Schulte K, Ng ML (2011) J Phys Chem 115:9568

    CAS  Google Scholar 

  9. Shimamura H, Nakamura T (2009) Polym Degrad Stab 94:1389

    Article  CAS  Google Scholar 

  10. Devapal D, Packirisamy S, Reghunadhan CP, Ninan KN (2006) J Mater Sci 41:5764. doi:10.1007/s10853-006-0109-5

    Article  CAS  Google Scholar 

  11. Su L, Tao L, Wang T, Wang Q (2012) Polym Degrad Stab 97:981

    Article  CAS  Google Scholar 

  12. Xiao F, Wang K, Zhan M (2012) J Mater Sci 47:4904. doi:10.1007/s10853-012-6363-9

    Article  CAS  Google Scholar 

  13. Jana S, Zhong WH (2009) J Mater Sci 44:1987. doi:10.1007/s10853-009-3293-2

    Article  CAS  Google Scholar 

  14. Young PR, Slemp WS, Whitley KS, Kalil CR, Siochi EJ, Shen JY, Chang AC (1995) NASA 95-23899

  15. Wang X, Zhao X, Wang M, Shen Z (2007) Polym Eng Sci 47:1156

    Article  CAS  Google Scholar 

  16. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Polymer 52:5

    Article  CAS  Google Scholar 

  17. Shen Z, Li J, Yi M, Zhang X, Ma S (2011) Nanotechnology 22:365306

    Article  Google Scholar 

  18. Wajid AS, Das S, Irin F, Ahmed HT, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ (2012) Carbon 50:526

    Article  CAS  Google Scholar 

  19. Serena Saw WP, Mariatti M (2012) J Mater Sci: Mater Electron 23: 817. doi: 10.1007/s10854-011-0499-2

  20. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S (2010) Prog Polym Sci 35:1350

    Article  CAS  Google Scholar 

  21. Cong H, Radosz M, Towler BF, Shen Y (2007) Sep Purif Technol 55:281

    Article  CAS  Google Scholar 

  22. Zaman I, Phan TT, Kuan H, Meng Q, La LTB, Luong L, Youssf O, Ma J (2001) Polymer 52:1603

    Article  Google Scholar 

  23. Zhao X, Shen Z, Xing Y, Ma S (2005) Polym Degrad Stab 88:275

    Article  CAS  Google Scholar 

  24. Wang M, Zhao X, Shen Z, Ma S, Xing Y (2004) Polym Degrad Stab 86:521

    Article  CAS  Google Scholar 

  25. Lotya M, Hemandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) J Am Chem Soc 131(10):3611

    Article  CAS  Google Scholar 

  26. Morant RA (1970) J Phys D Appl Phys 3:1367

    Article  CAS  Google Scholar 

  27. Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J (2009) ACS Nano 3:2547

    Article  CAS  Google Scholar 

  28. Du X, Yu Z, Dasari A, Ma J, Mo M, Meng Y, Mai Y (2008) Chem Mater 20:2066

    Article  CAS  Google Scholar 

  29. Du XS, Xiao M, Meng YZ, Hay AS (2005) Carbon 43:195

    Article  CAS  Google Scholar 

  30. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) Adv Funct Mater 18:1518

    Article  CAS  Google Scholar 

  31. Kuila T, Bose S, Khanra P, Kim NH, Rhee KY (2011) Compos A 42:1856

    Article  Google Scholar 

  32. Rutledge SK, Banks BA (1994) AIAA 94:2628

    Google Scholar 

  33. Singh V, Joung D, Zhai L, Das S, Khondaker S, Seal S (2011) Prog Mater Sci 56:1178

    Article  CAS  Google Scholar 

  34. Suprakas SR, Masami O (2003) Prog Mater Sci 28:1539

    Google Scholar 

  35. Choudalakis G, Gotsis AD (2009) Eur Polym J 45:967

    Article  CAS  Google Scholar 

  36. Topsakal M, Sahin H, Ciraci S (2012) Phys Rev B: Condens Matter 85:155445

    Article  Google Scholar 

  37. Sun T, Fabris S, Baroni S (2011) J Phys Chem 115:4730

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Funds for Co-construction Project of Beijing Municipal Commission of Education, the “985” Project of Ministry of Education of China, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Yi, M., Shen, Z. et al. Graphene-reinforced epoxy resin with enhanced atomic oxygen erosion resistance. J Mater Sci 48, 2416–2423 (2013). https://doi.org/10.1007/s10853-012-7028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7028-4

Keywords

Navigation