Skip to main content
Log in

Metallic glass formation in the binary Cu–Hf system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glass formation, structure and thermal properties of alloys in the binary Cu100−x Hf x alloy system, where x = 25–50 at.%, are reported and discussed. This work also presents a comparison between copper casting techniques, from thick melt-spun ribbons to suction cast cylindrical rods, and the prediction of critical diameter, d c, based on maximum ribbon thickness, x c. Ribbons of Cu60Hf40 and Cu65Hf35 exhibited a fully glassy phase up to a thickness of 170 μm. Suction casting lead to an increase in the largest diameter over which both alloys could be cast, in comparison to melt-spun ribbons, and remain amorphous, with Cu65Hf35 showing a large critical diameter of 1 mm. This result is rationalised by a lower liquidus temperature, T l, which maximises the reduced glass transition temperature, T rg, and also correlates closely with the eutectic point. Finally, there were remarkable similarities between the Miedema model and the efficient packing model for predicting the range for metallic glass formation in this binary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guo FQ, Poon SJ, Shiflet GJ (2004) Appl Phys Lett 84:37

    Article  CAS  Google Scholar 

  2. Tang MB, Zcxhao DQ, Pan MX, Wang WH (2004) Chin Phys Lett 21:901

    Article  CAS  Google Scholar 

  3. Duan G, Xu D, and Johnson W. L, (2005) High Copper Content Bulk Glass Formation in Bimetallic Cu–Hf System, Metall. and Mater. Trans. A, 36a, 455

  4. Inoue A, Zhang W (2004) Mater Trans, JIM 45:584

    Article  CAS  Google Scholar 

  5. Xia L, Ding D, Shan ST, Dong YD (2006) J Phys: Condens Matter 18:3543

    Article  CAS  Google Scholar 

  6. Jia P, Xu J (2009) J Mater Res 24–1:96

    Article  Google Scholar 

  7. Angell CA (1995) Science 267–5206:1924

    Article  Google Scholar 

  8. Busch R, Masuhr A, Johnson WL (2001) Mater Sci Eng, A 304–306:97

    Google Scholar 

  9. Basu J, Murty BS, Ranganathan S (2008) J Alloy Compd 465:163

    Article  CAS  Google Scholar 

  10. Miedema AR (1976) Philips Tech. Rev. 36:217

    CAS  Google Scholar 

  11. Li C, Chen SC, Du Z, Wang N (2011) Intermetallics 19:1678

    Article  CAS  Google Scholar 

  12. Davies HA (1994) In: Proceedings of the 4th international workshop on nonocrystalline solids: metallic glass formation revisited from nanostructured and nonocrystalline materials, World Scientific Press, Spain, p 3

  13. Massalski TB (1990) Binary alloy phase diagrams. ASM International, Materials Park

    Google Scholar 

  14. Turchanin MA, Agraval PG (2008) Powder Metall Met Ceram 47:26

    Article  CAS  Google Scholar 

  15. Shi LL, Xu J, Ma E (2008) Acta Mater 56–14:3613

    Article  Google Scholar 

  16. Figueroa IA, Rawal R, Stewart P, Carroll PA, Davies HA, Todd I, Jones H (2007) J Non-Cryst Solids 353:839

    Article  CAS  Google Scholar 

  17. Figueroa IA, Davies HA, Todd I, Yamada K (2007) Adv Eng Mater 9:496

    Article  CAS  Google Scholar 

  18. Figueroa IA, Davies HA, Todd I, Verduzco JA, Hawksworth P (2006) Adv Technol Mater Mater Process J (ATM) 8:146

    CAS  Google Scholar 

  19. Figueroa IA, Zhao H, González S, Davies HA, Todd I (2008) J Non-Cryst Solids 354:5181

    Article  CAS  Google Scholar 

  20. Ma D, Tan H, Wang D, Li Y, Ma E (2005) Appl Phys Lett 86:191906

    Article  Google Scholar 

  21. Wang D, Lia Y, Sun BB, Sui ML, Lu K, Ma E (2004) Appl Phys Lett 84:4029

    Article  CAS  Google Scholar 

  22. Figueroa IA, Davies HA, Todd I (2009) Phil Mag 89–27:2355

    Article  Google Scholar 

  23. Miracle DB (2006) Acta Mater 54:4317

    Article  CAS  Google Scholar 

  24. Miracle DB (2004) Nat Mater 3:697

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by PAPIIT-UNAM through Grant No. IB100712. A. Tejeda Cruz, J. J. Camacho, G. Aramburo, E. A. Caballero, R. Reyes, E. Contreras, C. Flores, E. Sánchez, J. Morales-Rosales and C. Gonzalez are also acknowledged for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Figueroa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueroa, I.A., Plummer, J.D., Lara-Rodriguez, G.A. et al. Metallic glass formation in the binary Cu–Hf system. J Mater Sci 48, 1819–1825 (2013). https://doi.org/10.1007/s10853-012-6946-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6946-5

Keywords

Navigation