Skip to main content
Log in

High molecular weight plasticizers in thermoplastic starch/polyethylene blends

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study thermoplastic starch (TPS) was prepared with four different molecular weight polyol plasticizers: glycerol, sorbitol, diglycerol and polyglycerol. Diglycerol-TPS (DTPS) and polyglycerol-TPS (PTPS) show significantly lower moisture uptake and a higher temperature stability when compared to conventional glycerol-TPS (GTPS). TPS formulations were blended with HDPE at a concentration of 20 TPS/80 HDPE wt% and a range of interfacial modifier contents via a one-step extrusion process. The emulsification curves of the blends, which track the volume and number average diameter of the dispersed TPS domains with per cent interfacial modifier, show significantly different profiles and a non-correspondence between the d n and d v values at the critical concentration for interfacial saturation. The addition of small amounts of interfacial modifier to the blends prepared with diglycerol and polyglycerol results in TPS dispersed phases of wide polydispersity with droplets in the order of 200–300 nm coexisting with droplets of 5–7 µm. This wide polydispersity of TPS phase size can give insight into the mechanism of droplet formation in these systems with interfacial modifier and is indicative of an erosion-type mechanism, where small portions of the TPS droplet break off at the outer part of the droplet. Blends prepared with GTPS and sorbitol-TPS do not display this behaviour and show a more classic correspondence of d n and d v at the critical concentration. Dynamic mechanical analysis shows miscible behaviour for DTPS and PTPS and partially miscible behaviour for GTPS. This phenomenon was attributed to the presence of ether bonds in the chemical structure of diglycerol and polyglycerol. The increased chain flexibility and lower cohesive energy forces of diglycerol and polyglycerol lead to a more homogeneous TPS phase and consequently an erosion-type compatibilization at the interface. The mechanical properties of blends prepared with polyglycerol and diglycerol show a similar overall behaviour to glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Burrell MM (2003) J Exp Bot 54(382):451. doi:10.1093/jxb/erg049

    Article  CAS  Google Scholar 

  2. Evangelista RL, Nikolov ZL, Wei S, Jane JL, Gelina RJ (1991) Ind Eng Chem Res 30(8):1841. doi:10.1021/ie00056a025

    Article  CAS  Google Scholar 

  3. Willett JL (1994) J Appl Polym Sci 54(11):1685. doi:10.1002/app.1994.070541112

    Article  CAS  Google Scholar 

  4. Otey FH, Westhoff RP, Doane WM (1980) Ind Eng Chem Prod Res Dev 19(4):4

    Article  Google Scholar 

  5. Chandra R, Rustgi R (1997) Polym Degrad Stab 56(2):185. doi:10.1016/s0141-3910(96)00212-1

    Article  CAS  Google Scholar 

  6. Averous L (2004) J Macromol Sci Polym Rev C44(3):231. doi:10.1081/mc-200029326

    Article  CAS  Google Scholar 

  7. St. Pierre N, Favis BD, Ramsay BA, Ramsay JA, Verhoogt H (1997) Polymer 38(3):647. doi:10.1016/s0032-3861(97)81176-7

    Article  CAS  Google Scholar 

  8. Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2004) Carbohydr Polym 58(2):139. doi:10.1016/j.carbpol.2004.06.002

    Article  CAS  Google Scholar 

  9. Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2003) Polymer 44(5):1517. doi:10.1016/s0032-3861(02)00907-2

    Article  CAS  Google Scholar 

  10. Rodriguez-Gonzalez FJ (2002) Low density polyethylene/thermoplastic starch blends. NQ73435. Ecole Polytechnique, Montreal

    Google Scholar 

  11. Bikiaris D, Panayiotou C (1998) J Appl Polym Sci 70(8):1503. doi:10.1002/(sici)1097-4628(19981121)70:8<1503:aid-app9>3.0.co;2-#

    Article  CAS  Google Scholar 

  12. Girija BG, Sailaja RRN (2006) J Appl Polym Sci 101(2):1109. doi:10.1002/app.24025

    Article  CAS  Google Scholar 

  13. Sailaja RRN (2005) Polym Int 54(2):286. doi:10.1002/pi.1669

    Article  CAS  Google Scholar 

  14. Sailaja RRN, Chanda M (2001) J Appl Polym Sci 80(6):863. doi:10.1002/1097-4628(20010509)80:6<863:aid-app1164>3.0.co;2-r

    Article  CAS  Google Scholar 

  15. Sailaja RRN, Chanda M (2002) J Appl Polym Sci 86(12):3126. doi:10.1002/app.11340

    Article  CAS  Google Scholar 

  16. Wang SJ, Yu JG, Yu JL (2004) J Appl Polym Sci 93(2):686. doi:10.1002/app.20416

    Article  CAS  Google Scholar 

  17. Shujun W, Jiugao Y, Jinglin Y (2005) Polym Degrad Stab 87(3):395. doi:10.1016/j.polymdegradstab.2004.08.012

    Article  Google Scholar 

  18. Sailaja RRN, Reddy AP, Chanda M (2001) Polym Int 50(12):1352. doi:10.1002/pi.787

    Article  CAS  Google Scholar 

  19. Wang SJ, Yu JG, Yu JL (2005) Polym Int 54(2):279. doi:10.1002/pi.1668

    Article  CAS  Google Scholar 

  20. Huneault MA, Li H (2007) Polymer 48(1):270. doi:10.1016/j.polymer.2006.11.023

    Article  CAS  Google Scholar 

  21. Zhang JF, Sun XZ (2004) Biomacromolecules 5(4):1446. doi:10.1021/bm0400022

    Article  CAS  Google Scholar 

  22. Sailaja RRN, Chanda M (2000) J Polym Mater 17(2):165

    CAS  Google Scholar 

  23. Taguet A, Huneault MA, Favis BD (2009) Polymer 50(24):5733. doi:10.1016/j.polymer.2009.09.055

    Article  CAS  Google Scholar 

  24. Averous L, Moro L, Dole P, Fringant C (2000) Polymer 41(11):4157. doi:10.1016/s0032-3861(99)00636-9

    Article  CAS  Google Scholar 

  25. Lourdin D, Bizot H, Colonna P (1997) J Appl Polym Sci 63(8):1047. doi:10.1002/(sici)1097-4628(19970222)63:8<1047:aid-app11>3.0.co;2-3

    Article  CAS  Google Scholar 

  26. Adeodato Vieira MG, da Silva MA, dos Santos LO, Beppu MM (2011) Eur Polymer J 47(3):254. doi:10.1016/j.eurpolymj.2010.12.011

    Article  Google Scholar 

  27. Nashed G, Rutgers PPG, Sopade PA (2003) Starch Starke 55(3–4):131. doi:10.1002/star.200390027

    Article  CAS  Google Scholar 

  28. Poutanen K, Forssell P (1996) Trends Polym Sci 4(4):128

    CAS  Google Scholar 

  29. Wang L, Shogren RL, Carriere C (2000) Polym Eng Sci 40(2):499. doi:10.1002/pen.11182

    Article  CAS  Google Scholar 

  30. Talja RA, Helen H, Roos YH, Jouppila K (2007) Carbohydr Polym 67(3):288. doi:10.1016/j.carbpol.2006.05.019

    Article  CAS  Google Scholar 

  31. Kalichevsky MT, Jaroszkiewicz EM, Blanshard JMV (1993) Polymer 34(2):346. doi:10.1016/0032-3861(93)90088-r

    Article  CAS  Google Scholar 

  32. Mathew AP, Dufresne A (2002) Biomacromolecules 3(5):1101. doi:10.1021/bm020065p

    Article  CAS  Google Scholar 

  33. Kaseem M, Hamad K, Deri F (2012) Polym Sci Ser A 54(2):165. doi:10.1134/s0965545x1202006x

    Article  CAS  Google Scholar 

  34. Gaudin S, Lourdin D, Le Botlan D, Ilari JL, Colonna P (1999) J Cereal Sci 29(3):273. doi:10.1006/jcrs.1999.0236

    Article  CAS  Google Scholar 

  35. Li H, Huneault MA (2011) J Appl Polym Sci 119(4):2439. doi:10.1002/app.32956

    Article  CAS  Google Scholar 

  36. Taghizadeh A, Favis BD (2012) Submitted for publication

  37. Macosko CW (2000) Macromol Symp 149:171. doi:10.1002/1521-3900(200001)149:1<171:aid-masy171>3.0.co;2-8

    Article  CAS  Google Scholar 

  38. Aravind I, Albert P, Ranganathaiah C, Kurian JV, Thomas S (2004) Polymer 45(14):4925. doi:10.1016/j.polymer.2004.04.063

    Article  CAS  Google Scholar 

  39. Kim JK, Lee H (1996) Polymer 37(2):305. doi:10.1016/0032-3861(96)81103-7

    Article  CAS  Google Scholar 

  40. Macosko CW, Jeon HK, Hoye TR (2005) Prog Polym Sci 30(8–9):939. doi:10.1016/j.progpolymsci.2005.06.003

    Article  CAS  Google Scholar 

  41. Bhadane PA, Tsou AH, Cheng J, Favis BD (2008) Macromolecules 41(20):7549. doi:10.1021/ma801390s

    Article  CAS  Google Scholar 

  42. Pan L, Chiba T, Inoue T (2001) Polymer 42(21):8825. doi:10.1016/s0032-3861(01)00441-4

    Article  CAS  Google Scholar 

  43. Pan L, Inoue T, Hayami H, Nishikawa S (2002) Polymer 43(2):337. doi:10.1016/s0032-3861(01)00616-4

    Article  CAS  Google Scholar 

  44. Favis BD, Rodriguez F, Ramsay BA (2003) United States Patent 6,605,657

  45. Favis BD, Rodriguez F, Ramsay BA (2005) United States Patent 6,844,380

  46. Favis BD, Chalifoux JP (1987) Polym Eng Sci 27(21):1591. doi:10.1002/pen.760272105

    Article  CAS  Google Scholar 

  47. Saltikov SA (1967) In: Elias H (ed) Proceedings of second international congress for stereology. Springer, Berlin, p 163

    Google Scholar 

  48. Favis BD (1994) Polymer 35(7):1552. doi:10.1016/0032-3861(94)90358-1

    Article  CAS  Google Scholar 

  49. Cigana P, Favis BD (1998) Polymer 39(15):3373. doi:10.1016/s0032-3861(97)10041-6

    Article  CAS  Google Scholar 

  50. Cigana P, Favis BD, Jerome R (1996) J Polym Sci Part B Polym Phys 34(9):1691. doi:10.1002/(sici)1099-0488(19960715)34:9<1691:aid-polb18>3.0.co;2-2

    Article  CAS  Google Scholar 

  51. Lomellini P, Matos M, Favis BD (1996) Polymer 37(25):5689. doi:10.1016/s0032-3861(96)00432-6

    Article  CAS  Google Scholar 

  52. Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Biomacromolecules 7(2):531. doi:10.1021/bm050797s

    Article  CAS  Google Scholar 

  53. Averous L, Fauconnier N, Moro L, Fringant C (2000) J Appl Polym Sci 76(7):1117. doi:10.1002/(sici)1097-4628(20000516)76:7<1117:aid-app16>3.0.co;2-w

    Article  CAS  Google Scholar 

  54. Martin O, Averous L (2001) Polymer 42(14):6209. doi:10.1016/s0032-3861(01)00086-6

    Article  CAS  Google Scholar 

  55. Bizot H, LeBail P, Leroux B, Davy J, Roger P, Buleon A (1997) Carbohydr Polym 32(1):33. doi:10.1016/s0144-8617(96)00146-4

    Article  CAS  Google Scholar 

  56. Sarazin P, Li G, Orts WJ, Favis BD (2008) Polymer 49(2):599. doi:10.1016/j.polymer.2007.11.029

    Article  CAS  Google Scholar 

  57. Chivrac F, Angellier-Coussy H, Guillard V, Pollet E, Averous L (2010) Carbohydr Polym 82(1):128. doi:10.1016/j.carbpol.2010.04.036

    Article  CAS  Google Scholar 

  58. Krogars K, Heinämäki J, Karjalainen M, Niskanen A, Leskelä M, Yliruusi J (2003) Int J Pharm 251(1–2):205. doi:10.1016/s0378-5173(02)00585-9

    Article  CAS  Google Scholar 

  59. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry, 4th edn. Wiley, Weinheim

    Google Scholar 

  60. Ionescu M (2005) Chemistry and technology of polyols for polyurethanes. Smithers Rapra Technology, Shropshire

    Google Scholar 

  61. Ravati S, Favis BD (2010) Polymer 51(16):3669. doi:10.1016/j.polymer.2010.06.015

    Article  CAS  Google Scholar 

  62. Virgilio N, Desjardins P, L’Esperance G, Favis BD (2010) Polymer 51(6):1472. doi:10.1016/j.polymer.2010.01.017

    Article  CAS  Google Scholar 

  63. Sivaniah E, Jones RAL, Higgins D (2009) Macromolecules 42(22):8844. doi:10.1021/ma9017394

    Article  CAS  Google Scholar 

  64. Broseta D, Fredrickson GH, Helfand E, Leibler L (1990) Macromolecules 23(1):132. doi:10.1021/ma00203a023

    Article  CAS  Google Scholar 

  65. Yoo S-H, Jane J-l (2002) Carbohydr Polym 49(3):307. doi:10.1016/s0144-8617(01)00339-3

    Article  CAS  Google Scholar 

  66. Bindzus W, Livings SJ, Gloria-Hernandez H, Fayard G, van Lengerich B, Meuser F (2002) Starch Starke 54(9):393. doi:10.1002/1521-379x(200209)54:9<393:aid-star393>3.0.co;2-w

    Article  CAS  Google Scholar 

  67. Liu W-C, Halley PJ, Gilbert RG (2010) Macromolecules 43(6):2855. doi:10.1021/ma100067x

    Article  CAS  Google Scholar 

  68. Bao JS, Ao ZH, Jane JI (2005) Starch Starke 57(10):480. doi:10.1002/star.200500422

    Article  CAS  Google Scholar 

  69. Lu QW, Macosko CW, Horrion J (2003) Macromol Symp 198:221. doi:10.1002/masy.200350819

    Article  CAS  Google Scholar 

  70. Jeon HK, Kim JK (1998) Macromolecules 31(26):9273. doi:10.1021/ma971002f

    Article  CAS  Google Scholar 

  71. Hameed T, Quinlan PJ, Potter DK, Takacs E (2012) Macromol Mater Eng 297(1):39. doi:10.1002/mame.201100117

    Article  CAS  Google Scholar 

  72. Bhadane PA, Tsou AH, Cheng J, Ellul M, Favis BD (2011) Polymer 52(22):5107. doi:10.1016/j.polymer.2011.08.049

    Article  CAS  Google Scholar 

  73. Kim HY, Jeong U, Kim JK (2003) Macromolecules 36(5):1594. doi:10.1021/ma0257907

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Teknor Apex Company for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil D. Favis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taghizadeh, A., Sarazin, P. & Favis, B.D. High molecular weight plasticizers in thermoplastic starch/polyethylene blends. J Mater Sci 48, 1799–1811 (2013). https://doi.org/10.1007/s10853-012-6943-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6943-8

Keywords

Navigation