Skip to main content
Log in

Synthesis, size reduction, and delithiation of carbonate-free nanocrystalline lithium nickel oxide

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lithium-based oxide nanoparticles have recently shown significant advantages as cathode materials for lithium ion batteries, showing higher ion exchanging rates related to the high surface area. Among them, LiNiO2 has been considered an attractive candidate due to its relatively low cost, high discharge capacity, reversibility, and low toxicity. However, the synthesis of nanosized LiNiO2 typically favors the formation of Li2CO3 and NiO phases, which critically affect the performance of the cathode nanoparticles. In this work, we describe the synthesis of lithium nickel oxide nanoparticles using a modified polymeric precursor method. As the formation of NiO and Li2CO3 was unavoidable, high temperatures would be required to obtain a carbonate-free LiNiO2. In order to avoid large coarsening of the particles associated with those treatments, samples were treated at lower temperatures and cleaned from surface Li2CO3 contaminants using acidic washing. The procedure successfully removed the carbonate, and also resulted in crystallite size reduction (28.1–15.2 nm) and controlled delithiation, simulating the lithium deficient conditions during electrochemical lithium displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balaya P (2008) Energy Environ Sci 1:645

    Article  CAS  Google Scholar 

  2. Seal S, Baraton MI (2004) MRS Bull 29:9

    Article  CAS  Google Scholar 

  3. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nat Mater 4:366

    Article  CAS  Google Scholar 

  4. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Edit 47:2930

    Article  CAS  Google Scholar 

  5. Armstrong AR, Paterson AJ, Robertson AD, Bruce PG (2002) Chem Mater 14:710

    Article  CAS  Google Scholar 

  6. Nordlinder S, Nyholm L, Gustafsson T, Edstrom K (2006) Chem Mater 18:495

    Article  CAS  Google Scholar 

  7. Shaju KM, Kuthanapillil M, Jiao F, Debart A, Bruce PG (2007) Phys Chem Chem Phys 9:1837

    Article  CAS  Google Scholar 

  8. Zhou YK, Li HL (2002) J Mater Chem 12:681

    Article  CAS  Google Scholar 

  9. Tatsumi K, Sasano Y, Muto S, Yoshida T, Sasaki T, Horibuchi K, Takeuchi Y, Ukyo Y (2008) Phys Rev B 78:045108

    Article  Google Scholar 

  10. Pouillerie C, Croguennec L, Biensan P, Willmann P, Delmas C (2000) J Electrochem Soc 147:2061

    Article  CAS  Google Scholar 

  11. Wang MJ, Navrotsky A (2004) Solid State Ion 166:167

    Article  CAS  Google Scholar 

  12. Moses AW, Flores HGG, Kim JG, Langell MA (2007) Appl Surf Sci 253:4782

    Article  CAS  Google Scholar 

  13. Lin SP, Fung KZ, Hon YM, Hon MH (2002) Nippon Seram Kyo Gak 110:1038

    Article  CAS  Google Scholar 

  14. Sathiyamoorthi R, Shakkthivel P, Ramalakshmi S, Shul YG (2007) J Power Sources 171:922

    Article  CAS  Google Scholar 

  15. Lin SP, Fung KZ, Hon YM, Hon MH (2001) J Cryst Growth 226:148

    Article  CAS  Google Scholar 

  16. Pechini M (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same form a capacitor. US Patent 3,330,697

  17. Wejrzanowski T, Pielaszek R, Opalinska A, Matysiak H, Lojkowski W, Kurzydlowski K (2006) Appl Surf Sci 253:204

    Article  CAS  Google Scholar 

  18. Arai H, Sakurai Y (1999) J Power Sources 81:401

    Article  Google Scholar 

  19. Venkatraman S, Choi J, Manthiram A (2004) Electrochem Commun 6:832

    Article  CAS  Google Scholar 

  20. Yin S-C, Rho Y-H, Swainson I, Nazar LF (2006) Chem Mater 18:1901

    Article  CAS  Google Scholar 

  21. Choi J, Manthiram A (2004) Electrochem Solid-State Lett 7:A365

    Article  CAS  Google Scholar 

  22. Yin, S-C, Rho, Y-H, Swainson, I, Nazar, LF (2005) Mater Res Soc Symp Proc 835:K11.10.1

Download references

Acknowledgements

This work was supported by the National Science Foundation grant DMR Ceramics 1055504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo H. R. Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dearden, C., Zhu, M., Wang, B. et al. Synthesis, size reduction, and delithiation of carbonate-free nanocrystalline lithium nickel oxide. J Mater Sci 48, 1740–1745 (2013). https://doi.org/10.1007/s10853-012-6932-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6932-y

Keywords

Navigation