Skip to main content
Log in

Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyaniline/graphene oxide (PANI/GO) composites were prepared by polymerization of aniline monomer in the presence of GO under acidic conditions. The synthesized samples were characterized by Fourier transform infra red spectroscopy, ultraviolet–visible absorption, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. The direct current electrical conductivity of the composite was calculated by a four-probe technique. It is found that the conductivity dramatically increased to 241 S m−1 for PANI/GO (5 wt%) composite at 110 °C compared to pure PANI (7.5 S m−1). The composite material was investigated as a methanol vapour sensor and compared with pure PANI. The methanol-sensing characteristics of the prepared composite was monitored by measuring the change in electrical resistivity on exposure to methanol vapour at different concentrations. The resistivity of PANI increases on exposure to methanol vapour because of strong hydrogen bonding between methanol with the polymer chain. A density functional theory study was carried out to verify the proposed concept of hydrogen bonding between the polymer chains and methanol. The presence of GO in PANI/GO composite increases the sensitivity towards methanol as compared with the pure PANI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Huang JX, Virji S, Weiller BH, Kaner RB (2003) J Am Chem Soc 125:314

    Article  CAS  Google Scholar 

  2. Gurunathan T, Chepuri RKR, Narayan R, Raju KVSN (2012) J Mater Sci. doi:10.1007/s10853-012-6658-x

    Google Scholar 

  3. Maiti J, Pokhrel B, Boruah R, Dolui SK (2009) Sens Actuator B 141:447

    Article  Google Scholar 

  4. Yan XB, Han ZJ, Yang Y, Tay BK (2007) Sens Actuators B 123:107

    Article  Google Scholar 

  5. Chithralekha P, Balaji M, Subramanian S, Padiyan PD (2010) Curr Appl Phys 10:457

    Article  Google Scholar 

  6. Xie D, Jiang Y, Pan W, Li D, Wu Z, Li Y (2002) Sens Actuators B 81:158

    Article  Google Scholar 

  7. Kim JS, Sohn SO, Huh JS (2005) Sens Actuators B 108:409

    Article  Google Scholar 

  8. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  9. Wu J, Pisula W, Mullen K (2007) Chem Rev 107:718

    Article  CAS  Google Scholar 

  10. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Science 315:490

    Article  CAS  Google Scholar 

  11. Jang BZ, Zhamu A (2008) J Mater Sci 43:5092. doi:10.1007/s10853-008-2755-2

    Article  CAS  Google Scholar 

  12. Wang X, Zhi L, Mullen K (2008) Nano Lett 8:323

    Article  CAS  Google Scholar 

  13. Jonathan P, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) Angew Chem Int Ed 50:3173

    Article  Google Scholar 

  14. Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J (2009) ACS Nano 3:2547

    Article  CAS  Google Scholar 

  15. Matsuo Y, Tahara K, Sugie Y (1997) Carbon 35:113

    Article  CAS  Google Scholar 

  16. Liu PG, Gong KC, Xiao P, Xiao M (2000) J Mater Chem 10(4):933

    Article  CAS  Google Scholar 

  17. Xu JY, Hu Y, Song L, Wang QG, Fan WC, Liao GX et al (2001) Polym Degrad Stab 73:29

    Article  CAS  Google Scholar 

  18. Kai WH, Hirota Y, Hua L, Inoue Y (2008) J Appl Polym Sci 107:1395

    Article  CAS  Google Scholar 

  19. Kotov NA, Dekany I, Fendler JH (1996) Adv Mater 8:637

    Article  CAS  Google Scholar 

  20. Cassagneau T, Fendler JH (1998) Adv Mater 10:877

    Article  CAS  Google Scholar 

  21. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV et al (1999) Chem Mater 11:771

    Article  CAS  Google Scholar 

  22. Wu JH, Tang QW, Sun H, Lin JM, Ao HY, Huang ML et al (2008) Langmuir 24:4800

    Article  CAS  Google Scholar 

  23. Yan J, Wei T, Shao B, Fan QZ, Wei F et al (2010) Carbon 48:487

    Article  CAS  Google Scholar 

  24. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Iijima S et al (2006) Nat Mater 5:987

    Article  CAS  Google Scholar 

  25. Portet C, Chmiola J, Gogotsi Y, Park S, Lian K (2008) Electrochim Acta 53:7675

    Article  CAS  Google Scholar 

  26. Yang CM, Kim YJ, Endo M, Kanoh H, Yudasaka M, Iijima S et al (2007) J Am Chem Soc 129:20

    Article  CAS  Google Scholar 

  27. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520

    Article  CAS  Google Scholar 

  28. Nicolas-Debarnot D, Poncin-Epaillard F (2003) Anal Chim Acta 475:1

    Article  CAS  Google Scholar 

  29. Prasad GK, Radhakrishnan TP, Kumar DS, Krishna MG (2005) Sens Actuators B 106:626

    Article  Google Scholar 

  30. Tan CK, Blackwood DJ (2000) Sens Actuators B 71:184

    Article  Google Scholar 

  31. Dixit V, Misra SCK, Sharma BS (2005) Sens Actuators B 104:90

    Article  Google Scholar 

  32. Ogura K, Shiigi H (1999) Electrochem Solid State Lett 2:478

    Article  CAS  Google Scholar 

  33. Chabukswar VV, Pethkar S, Athawale AA (2001) Sens Actuators B 77:657

    Article  Google Scholar 

  34. Anitha G, Subramanian E (2003) Sens Actuators B 92:49

    Article  Google Scholar 

  35. Parmar M, Rajanna K (2011) Int J Smart Sens Intell Syst 4:710

    CAS  Google Scholar 

  36. Faisal M, Khan SB, Rahman MM, Jamal A, Abdullah MM (2012) Appl Surf Sci 258:7515

    Article  CAS  Google Scholar 

  37. Miao F, Tao B, Chu PK (2012) Anal Lett 45:1447

    Article  CAS  Google Scholar 

  38. Santra S, Guha PK, Ali SZ, Hiralal P, Unalan HE, Covington JA et al (2010) Sens Actuators B 146:559

    Article  Google Scholar 

  39. Barker PS, Chen JR, Agbor NI, Monkman AP, Mars P, Petty MC (1994) Sens Actuators B 17:143

    Article  CAS  Google Scholar 

  40. Ogura K, Shiigi H, Nakayama M, Fujii A (1998) J Electrochem Soc 145:3351

    Article  CAS  Google Scholar 

  41. MacDiarmid AG, Zhang WJ, Feng J, Haung F (1998) ANTEC’ society of plastic engineers, Atlanta, pp 1330–1334

  42. Sukeerthi S, Contractor AQ (1994) Indian J Chem Sect A 33:565

    Google Scholar 

  43. Hatfield JV, Neaves PI, Hicks PJ, Persuad KC, Travers P (1994) Sens Actuators B 18:221

    Article  CAS  Google Scholar 

  44. Pradip K, Pradhan NC, Adhikari B (2009) Sens Actuators B 140:525

    Article  Google Scholar 

  45. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Chem Mater 22:1392

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Pople JA et al. (2003) Gaussian 03, revision D.02, Gaussian, Inc., Pittsburgh

  47. Wang H, Hao Q, Yang X, Lu L, Wang X (2010) Appl Mater Interfaces 2:821

    Article  CAS  Google Scholar 

  48. Cruz-Silva R, Romero-Garcia J, Angulo-Sanchez JL, Flores-Loyola E, Farias MH, Diaz JA et al (2004) Polymer 45:4711

    Article  CAS  Google Scholar 

  49. Tiwaria A, Kumar R, Prabaharan M, Pandey RR, Kumari P, Mishra AK et al (2010) Polym Adv Technol 21:615

    Article  Google Scholar 

  50. Huang WS, MacDiarmid AG (1993) Polymer 34:1833

    Article  CAS  Google Scholar 

  51. Yong D, Shirley ZS, Weidong Y, Richard D, Kefeng C, Philip SC (2012) Synth Met 161:2688

    Article  Google Scholar 

  52. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Nano Lett 8:36

    Article  CAS  Google Scholar 

  53. Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma YJ (2011) Power Sources 196:5990

    Article  CAS  Google Scholar 

  54. Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Kern K et al (2007) Nano Lett 7:3499

    Article  CAS  Google Scholar 

  55. Konwer S, Dolui SK (2010) Mater Chem Phys 124:738

    Article  CAS  Google Scholar 

  56. Miasik JJ, Hopper A, Tofield BC (1986) J Chem Soc Faraday Trans 82:1117

    Article  CAS  Google Scholar 

  57. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  58. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  59. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Rana Howlader, Department of Chemistry, Indian Institute of Technology, Bombay, India, for his assistance in obtaining the TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Konwer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konwer, S., Guha, A.K. & Dolui, S.K. Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. J Mater Sci 48, 1729–1739 (2013). https://doi.org/10.1007/s10853-012-6931-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6931-z

Keywords

Navigation