Skip to main content

Advertisement

Log in

The effect of the phase transition on the elasticity of cubic platinum carbide

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A study of the high-pressure elastic properties of ideal stoichiometric platinum carbide (PtC) in the rock-salt (RS) and zinc-blende (ZB) structures was conducted using first-principles calculations based on density functional theory, in which we employ the generalized gradient approximation of the Perdew–Burke–Eruzerhof form together with plane-wave basis sets for expanding the crystal orbitals and periodic electron density. Our calculation shows that the recently synthesized compound PtC possess a high-bulk modulus value in the RS phase and the ZB phase is more stable. The investigation of the elastic stability under pressure indicated that the transition pressure from ZB to RS structure of PtC is about 30 GPa and the high-pressure RS phase is stable up to 100 GPa. Our conclusions are consistent with the other theoretical predictions but are reversed with the diamond anvil cell experimental results. Therefore, the experimental observation of the RS structure in PtC remains a puzzle and our study indicates that more experimental and theoretical works need to be performed to ascertain the true nature of the newly discovered PtC material. In addition, the pressure dependence of the bulk modulus K, the shear modulus G, the Young’s modulus E, the Poisson’s ratio υ, the Debye temperature Θ D, the compressional wave velocity V p, the shear wave velocity V s, and the elastic anisotropy factor A for the ZB and RS structures of PtC are all successfully obtained. Moreover, the pressure dependence of the longitudinal and the shear wave velocities in three directions [100], [110], and [111] for cubic PtC are also predicted for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Storms EK (1967) The refractory carbides. Academic Press, New York

    Google Scholar 

  2. Toth LE (1971) Transition metal carbides and nitrides. Academic Press, New York

    Google Scholar 

  3. Liang Y, Li C, Guo W, Zhang W (2009) Phys Rev B 79:024111

    Article  Google Scholar 

  4. Grossman JC, Mizel A, Cote M, Cohen ML, Louie SG (1999) Phys Rev B 60:6343

    Article  CAS  Google Scholar 

  5. Meloni G, Thomson LM, Gingerich KA (2001) J Chem Phys 115:4496

    Article  CAS  Google Scholar 

  6. Lindholm NF, Hales DA, Ober LA, Morse MD (2004) J Chem Phys 121:6855

    Article  CAS  Google Scholar 

  7. Ivanovskii AL (2009) Russ Chem Rev 78:303

    Article  CAS  Google Scholar 

  8. Ono S, Kikegawa T, Ohishi Y (2005) Solid State Commun 133:55

    Article  CAS  Google Scholar 

  9. Li LY, Yu W, Jin CQ (2005) J Phys: Condens Matter 17:5965

    Article  CAS  Google Scholar 

  10. Peng F, Fu HZ, Yang XD (2008) Solid State Commun 145:91

    Article  CAS  Google Scholar 

  11. Fan CZ, Zeng SY, Zhan ZJ, Liu RP, Wang WK, Zhang P, Yao YG (2006) Appl Phys Lett 89:071913

    Article  Google Scholar 

  12. Fan CZ, Sun LL, Wang YX, Liu RP, Zeng SY, Wang WK (2006) Phys B 381:174

    Article  CAS  Google Scholar 

  13. Sahu BR, Kleinman L (2005) Phys Rev B 71:041101

    Article  Google Scholar 

  14. Gregoryanz E, Sanloup C, Somayazulu M, Badro J, Flquet G, Mao HK, Hemley RJ (2004) Nat Mater 5:294

    Article  Google Scholar 

  15. Parrinello M, Rahman A (1980) Phys Rev Lett 45:1196

    Article  CAS  Google Scholar 

  16. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  17. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  18. Fischer TH, Almlof J (1992) J Phys Chem 96:9768

    Article  CAS  Google Scholar 

  19. Wentzcovitch RM, Martins JL, Price GD (1993) Phys Rev Lett 70:3947

    Article  CAS  Google Scholar 

  20. Karki BB, Stixrude L, Clark SJ, Warren MC, Ackland GJ, Crain J (1997) Am Miner 82:52

    Google Scholar 

  21. Karki BB, Ackland GJ, Crain J (1997) J Phys: Condens Matter 9:8579

    Article  CAS  Google Scholar 

  22. Hill R (1952) Proc Phys Soc Lond A 65:349

    Article  Google Scholar 

  23. Mayer B, Anton H, Bott E, Methfessel M, Sticht J, Schmidt PC (2003) Intermetallics 11:23

    Article  CAS  Google Scholar 

  24. Anderson OL (1963) J Phys Chem Solids 24:909

    Article  CAS  Google Scholar 

  25. Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurements. McGraw-Hill, New York

    Google Scholar 

  26. Hachemi A, Saoudi A, Louail L, Maouche D, Bouguerra A (2009) Phase Transitions 82:87

    Article  CAS  Google Scholar 

  27. Birch F (1978) J Geophys Res 83:1257

    Article  CAS  Google Scholar 

  28. Deligoz E, Ciftci YO, Jochym PT, Colakoglu K (2008) Mater Chem Phys 111:29

    Article  CAS  Google Scholar 

  29. Rabah M, Rached D, Ameri M, Khenata R, Zenati A, Moulay N (2008) J Phys Chem Solids 69:2907

    Article  CAS  Google Scholar 

  30. Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon, Oxford

    Google Scholar 

  31. Wang J, Yip S, Phillpot SR, Wolf D (1993) Phys Rev Lett 71:4182

    Article  CAS  Google Scholar 

  32. Wang J, Yip S, Phillpot SR, Wolf D (1995) Phys Rev B 52:12627

    Article  CAS  Google Scholar 

  33. Sun XW, Zeng ZY, Song T, Fu ZJ, Kong B, Chen QF (2010) Chem Phys Lett 496:64

    Article  CAS  Google Scholar 

  34. Christman JR (1988) Fundamentals of solid state physics. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China under Grant Nos. 11164013, 11161027, and 11074226, the National Basic Research Program of China under Grant No. 2011CB808201, the Science and Technology Development Foundation of China Academy of Engineering Physics under Grant No. 2012B0101001, and the Foundation of National Key Laboratory of shock wave and Detonation Physics of China Academy of Engineering Physics under Grant No. 9140C670104120C6703.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X.W., Chu, Y.D., Quan, W.L. et al. The effect of the phase transition on the elasticity of cubic platinum carbide. J Mater Sci 48, 1660–1668 (2013). https://doi.org/10.1007/s10853-012-6924-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6924-y

Keywords

Navigation