Skip to main content

Advertisement

Log in

First principle study on pressure-induced electronic structure and elastic properties of indium phosphide (InP)

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structural, elastic and electronic properties of indium phosphide in zinc-blende and rock-salt structure under various pressures are studied using the first principle calculation based on the density functional theory with modified Becke–Johnson potential. The pressure-induced structural phase transition from zinc blende to rock salt is observed at 9.3 GPa pressure with 16.4 % volume collapse, indicating that zinc-blende structure is more compressible as compared to rock-salt structure. The elastic constants and elastic parameters such as Zener anisotropic factor, Kleinmann parameter, Poisson’s ratio, isotropic shear modulus, Young’s modulus and Debye’s temperature under different pressures are obtained and show a linear relation with pressure. The electronic band structures at different pressures are investigated using the total and partial density of states. The calculated results are found to be in good agreement with other theoretical and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y K Vohra, S T Weir and A L Ruoff Phys. Rev. B 31 7344 (1981)

    Article  ADS  Google Scholar 

  2. S Schilling and R N Shelton Phys. of Solids Under Pressure (New York: North-Holland) (1981)

    Google Scholar 

  3. J M Besson, J P Itie, A Polian, G Weil, J L Mansot and J Gonzales Phys. Rev. B 44 4214 (1991)

    Article  ADS  Google Scholar 

  4. M Jameson, B Indrajit Sharma, R Bhattacharjee, R K Thapa and R K Brojen Physica B 406 4041 (2011)

    Article  ADS  Google Scholar 

  5. A Mujica, A Rubio, A Munoz and R J Needs Rev. Mod. Phys. 75 912 (2003)

    Article  Google Scholar 

  6. J Sjakste, N Vast and V Tyuterev Phys. Rev. Lett. 99 236405 (2007)

    Article  ADS  Google Scholar 

  7. E S Kadantsev arXiv:1005.0615vl [cond-mat.mtrl-sci] (2010)

  8. L Sukit, P Reunchan, A Janotti and G V W Chris Phys. Rev. B 77 195209 (2008)

    Article  ADS  Google Scholar 

  9. L Lin, G T Woods and T A Callcott Phys. Rev. B 63 235107 (2001)

    Article  ADS  Google Scholar 

  10. J G Díaz, G W Bryant, W Jaskólski and M Zielinski Phys. Rev. B 75 245433 (2007)

    Article  ADS  Google Scholar 

  11. S Minomura and H G Drickamer J. Phys. Chem. Solids 23 451 (1962)

    Article  ADS  Google Scholar 

  12. J C Jamieson Science 139 845 (1963)

    Article  ADS  Google Scholar 

  13. T Soma, J Satoh and H Matsuo Solid State Commun. 42 889 (1982)

    Article  ADS  Google Scholar 

  14. C S Menoni and I L Spain Phys. Rev. B 35 7520 (1987)

    Article  ADS  Google Scholar 

  15. O Arbouche, B Belgoumene, B Soudinia, Y Azzaz, H Bendaoud and K Amara Comput. Mater. Sci. 47 685 (2010)

    Article  Google Scholar 

  16. P S Branicio, J P Rino and F Shimojo Appl. Phys. Lett. 88 161919 (2006)

    Article  ADS  Google Scholar 

  17. G Onida, L Reining and A Rubio Rev. Mod. Phys. 74 601 (2012)

    Article  ADS  Google Scholar 

  18. K. Kabita, M Jameson, B Indrajit Sharma, R K Thapa Singh and R K Brojen Adv. Sci. Eng. Med. 6 354 (2014)

    Article  Google Scholar 

  19. K. Kabita, M Jameson, B Indrajit Sharma, R K Thapa Singh and R K Brojen Iraqi. J. Appl. Phys. 9 17 (2014)

    Google Scholar 

  20. E Wimmer, H Krakauer, M Weinert and A J Freeman Phys. Rev. B 24 864 (1981)

    Article  ADS  Google Scholar 

  21. A D Becke and E R Johnson J. Chem. Phys. 124 221101 (2006)

    Article  ADS  Google Scholar 

  22. P Hohenberg and W Kohn Phys. Rev. 136 864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  23. W Kohn and L J Sham Phys. Rev. 140 1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  24. S Cottenier Density Functional Theory and the family of (L)APW-methods: a step-by-step Introduction (Belgium: Instituut voor Kern-en Stralingsfysica, K. U. Leuven) ISBN 90-807215-1-4 (2002)

  25. J P Perdew, S Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  26. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2k An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Austria: Karlheinz Schwarz, Techn. Universitat Wien) ISBN 3-9501031-1-2 (2001)

  27. F Birch Phys. Rev. 71 809 (1947)

    Article  MATH  ADS  Google Scholar 

  28. F Birch, J. Appl. Phys. 9 279 (1938)

    Article  MATH  ADS  Google Scholar 

  29. W Paul J. App. Phys. 32 2082 (1961)

  30. O Madelung Semiconductors Physics of Group IV elements and III-V compounds Landolt-Bornstein, New Series, Group III vol. 17 part A (Berlin: Springer-Verlag) (1982)

  31. A Mujica and R J Needs Phys. Rev. B 55 9659 (1997)

    Article  ADS  Google Scholar 

  32. S Kalvoda, B Paulus, P Flude and H Stoll Phys. Rev. B 7 4027 (1997)

    Article  ADS  Google Scholar 

  33. A Seidl, A Gorling, P Vogl, J A Majewski and M Levy Phys. Rev. B 53 3764 (1996)

    Article  ADS  Google Scholar 

  34. D Nichols, D Rimia and R Sladek Solid State Commun. 36 667 (1980)

    Article  ADS  Google Scholar 

  35. R Trommer, H Muller, M Cardona and P Vogl Phys. Rev. B 21 4878 (1980)

    Article  ADS  Google Scholar 

  36. M Yousaf, M A Saeed, R Ahmed, MM Alsardia, A R M Isa and A Shaari Commun. Theor. Phys. 58 777 (2012)

    Article  Google Scholar 

  37. R W G Wyckoff, Crystal Structures 2nd edn. (Malabar: Krieger) (1986)

    Google Scholar 

  38. R Ahmed, F Aleem, S J Hashemifar and H Ak-barzadeh Phys. B 403 1876 (2008)

    Article  ADS  Google Scholar 

  39. M I Mc Mahon, R J Nelmes, N G Wright and D R Allan Proceedings of the Joint Conference on the AIRATP/APS On High-Pressure Science and Technology, June 28–July 2 (eds.) S C Schmit, J W Shaner, G A Samara and M Ross (Colorado: ColoradoSprings) p 629 (1993)

  40. I Lukacevic, D Kirin, P K Jha and S K Gupta Phys. Status Solidi B 247 273 (2010)

    Article  ADS  Google Scholar 

  41. H Chenghua, F Wang and Z Zheng J. Mater. Res. 27, 1105 (2012)

    Article  ADS  Google Scholar 

  42. R K Singh and S Singh Phys. Rev. B 39 671 (1989)

    Article  ADS  Google Scholar 

  43. S B Zhang and M L Cohen Phys. Rev. B 35 7604 (1987)

    Article  ADS  Google Scholar 

  44. B Mayer et al. Intermetallics 11 23 (2003)

  45. L Johnston, G Keeler, R Rollins and S Spicklemire The Consortium for Upper-Level Physics Software, (New York: John Wiley) (1996)

    Google Scholar 

  46. I Anderson J. Phys. Chem. Solids 24 909 (1963)

    Article  ADS  Google Scholar 

  47. E Schreiber, O L Anderson and N Soga Elastic constants and their measurements. (New York: McGraw-Hill) (1973)

    Google Scholar 

  48. V V Bannikov, I R Shein and A L Ivanovskii Phys. Status. Solidi. Rapid. Res. Lett. 3 89 (2007)

    Article  ADS  Google Scholar 

  49. H Fu et al. Comput. Mater. Sci. 44 774 (2008)

  50. S F Pugh Phil. Mag. 45 833 (1954)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabita, K., Maibam, J., Sharma, B.I. et al. First principle study on pressure-induced electronic structure and elastic properties of indium phosphide (InP). Indian J Phys 89, 1265–1271 (2015). https://doi.org/10.1007/s12648-015-0701-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0701-0

Keywords

PACS Nos.

Navigation