Skip to main content
Log in

Microstructure of ZnO films synthesized on MgAl2O4 from low-temperature aqueous solution: growth and post-annealing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure of ZnO films synthesized from low-temperature (90 °C) aqueous solution on (111) MgAl2O4 single crystal substrates was characterized by X-ray diffraction, high-resolution scanning electron microscopy, conventional and high-resolution transmission electron microscopy. To examine the thermally activated microstructural evolution of the ZnO, both as-deposited and annealed films were characterized. The ZnO films were confirmed to have a ZnO\( [10\bar{1}0](0001)\left\| {{\text{MgAl}}_{ 2} {\text{O}}_{4} [011](1\bar{1}1)} \right. \) orientation relationship, with Zn polarity normal to the surface. Despite their highly oriented nature, the ZnO films have a columnar grain structure with low-angle (<2.5°) grain boundaries. In addition to lattice dislocations forming low-angle grain boundaries, threading dislocations were observed, emanating from the interface with the substrate. In annealed films, thermally generated voids were observed and appeared to preferentially form at grain boundaries and dislocations. Based on these characterization results, mechanisms are proposed for film growth and microstructural evolution. Finally, the diffusion coefficient of vacancies via dislocations at grain boundaries in the produced ZnO films was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Klingshirn C (2007) ChemPhysChem 8(6):782

    Article  CAS  Google Scholar 

  2. Look DC (2001) Mater Sci Eng B 80(1–3):383

    Article  Google Scholar 

  3. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho S-J, Morkoc H (2005) J Appl Phys 98(4):041301

    Article  Google Scholar 

  4. Karpina VA, Lazorenko VI, Lashkarev CV, Dobrowolski VD, Kopylova LI, Baturin VA, Pustovoytov SA, Karpenko AJ, Eremin SA, Lytvyn PM, Ovsyannikov VP, Mazurenko EA (2004) Cryst Res Technol 39(11):980

    Article  CAS  Google Scholar 

  5. Kim K–K, Song J-H, Jung H-J, Choi W-K, Park S-J, Song J-H (2000) J Appl Phys 87(7):3573

    Article  CAS  Google Scholar 

  6. Chen Y, Hong S-K, Ko H-J, Nakajima M, Yao T, Segawa Y (2000) Appl Phys Lett 76(2):245

    Article  CAS  Google Scholar 

  7. Kaidashev EM, Lorenz M, von Wenckstern H, Rahm A, Semmelhack HC, Han KH, Benndorf G, Bundesmann C, Hochmuth H, Grundmann M (2003) Appl Phys Lett 82(22):3901

    Article  CAS  Google Scholar 

  8. Meléndrez M, Hanks K, Leonard-Deepak F, Solis-Pomar F, Martinez-Guerra E, Pérez-Tijerina E, José-Yacaman M (2012) J Mater Sci 47(4):2025. doi:10.1007/s10853-011-6002-x

    Article  Google Scholar 

  9. Gao X-D, Peng F, Li X-M, Yu W-D, Qiu J–J (2007) J Mater Sci 42(23):9638. doi:10.1007/s10853-007-1970-6

    Article  CAS  Google Scholar 

  10. Ehrentraut D, Sato H, Kagamitani Y, Sato H, Yoshikawa A, Fukuda T (2006) Prog Cryst Growth Charact Mater 52(4):280

    Article  CAS  Google Scholar 

  11. Hodes G (2003) Chemical solution deposition of semiconductor films. Marcel Dekker, New York

    Google Scholar 

  12. Segawa H, Sakurai H, Izumi R, Hayashi T, Yano T, Shibata S (2011) J Mater Sci 46(10):3537. doi:10.1007/s10853-011-5263-8

    Article  CAS  Google Scholar 

  13. Lincot D (2005) Thin Solid Films 487(1–2):40

    Article  CAS  Google Scholar 

  14. Patil S, Singh A (2010) J Mater Sci 45(19):5204. doi:10.1007/s10853-010-4559-4

    Article  CAS  Google Scholar 

  15. Hu S-H, Chen Y-C, Hwang C-C, Peng C-H, Gong D-C (2010) J Mater Sci 45(19):5309. doi:10.1007/s10853-010-4576-3

    Article  CAS  Google Scholar 

  16. Govender K, Boyle DS, Kenway PB, O’Brien P (2004) J Mater Chem 14(16):2575

    Article  CAS  Google Scholar 

  17. Holt DB, Yacobi BG (2007) Extended defects in semiconductors: electronic properties, device effects and structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Queisser HJ, Haller EE (1998) Science 281(5379):945

    Article  CAS  Google Scholar 

  19. Liu WR, Hsieh WF, Hsu CH, Liang KS, Chien FSS (2006) J Cryst Growth 297(2):294

    Article  CAS  Google Scholar 

  20. Domingos HS, Bristowe PD, Carlsson J, Hellsing B (2001) Interface Sci 9(3):231

    Article  CAS  Google Scholar 

  21. McCoy MA, Grimes RW, Lee WE (1996) J Mater Res 11(8):2009

    Article  CAS  Google Scholar 

  22. Ohno Y, Koizumi H, Taishi T, Yonenaga I, Fujii K, Goto H, Yao T (2008) J Appl Phys 104(7):073515

    Article  Google Scholar 

  23. Janotti A, Van de Walle C (2009) Rep Prog Phys 72(12):126501

    Article  Google Scholar 

  24. Sun HP, Pan XQ, Du XL, Mei ZX, Zeng ZQ, Xue QK (2004) Appl Phys Lett 85(19):4385

    Article  CAS  Google Scholar 

  25. Yuk JM, Lee JY, Kim TW, Son DI, Choi WK (2008) J Mater Res 23(04):1082

    Article  CAS  Google Scholar 

  26. Andeen D, Kim JH, Lange FF, Goh GKL, Tripathy S (2006) Adv Funct Mater 16(6):799

    Article  CAS  Google Scholar 

  27. Richardson JJ, Lange FF (2009) Cryst Growth Des 9(6):2576

    Article  CAS  Google Scholar 

  28. Thangadurai P, Lumelsky Y, Silverstein MS, Kaplan WD (2008) Mater Charact 59(11):1623

    Article  CAS  Google Scholar 

  29. Baram M, Kaplan WD (2008) J Microsc 232(3):395

    Article  CAS  Google Scholar 

  30. Pecharsky VK, Zavalij PY (2009) Fundamentals of powder diffraction and structural characterization of materials. Springer, New York, p 127

    Google Scholar 

  31. Andeen D, Loeffler L, Padture N, Lange FF (2003) J Cryst Growth 259(1–2):103

    Article  CAS  Google Scholar 

  32. Brandon D, Kaplan WD (2008) Microstructural characterization of materials. Wiley, New York, pp 22, 477

  33. Daudin B, Rouvière JL, Arlery M (1996) Appl Phys Lett 69(17):2480

    Article  CAS  Google Scholar 

  34. Mader W, Rečnik A (1998) Phys Status Solidi A 166(1):381

    Article  CAS  Google Scholar 

  35. Stadelmann PA (1987) Ultramicroscopy 21(2):131

    Article  CAS  Google Scholar 

  36. Rečnik A, Bernik S, Daneu N (2012) J Mater Sci 47(4):1655. doi:10.1007/s10853-011-5937-2

    Article  Google Scholar 

  37. Meltzman H, Mordehai D, Kaplan WD (2012) Acta Mater 60(11):4359

    Article  CAS  Google Scholar 

  38. Jin BJ, Woo HS, Im S, Bae SH, Lee SY (2001) Appl Surf Sci 169–170:521

    Article  Google Scholar 

  39. Kang HS, Kang JS, Kim JW, Lee SY (2004) J Appl Phys 95(3):1246

    Article  CAS  Google Scholar 

  40. Thompson CV (1990) Annu Rev Mater Sci 20(1):245

    Article  CAS  Google Scholar 

  41. Li W-J, Shi E-W, Zhong W-Z, Yin Z-W (1999) J Cryst Growth 203(1–2):186

    Article  CAS  Google Scholar 

  42. Podlogar M, Richardson JJ, Vengust D, Daneu N, Samardžija Z, Bernik S, Rečnik A (2012) Adv Funct Mater. doi:10.1002/adfm.201200214

    Google Scholar 

  43. Richardson JJ, Goh GKL, Le HQ, Liew L-L, Lange FF, DenBaars SP (2011) Cryst Growth Des 11(8):3558

    Article  CAS  Google Scholar 

  44. Love GR (1964) Acta Metall 12(6):731

    Article  Google Scholar 

  45. Als-Nielsen J, McMorrow D (2011) Elements of modern X-ray physics. Wiley, New York, pp 20, 221

  46. Richardson JJ, Lange FF (2011) J Mater Chem 21(6):1859

    Article  CAS  Google Scholar 

  47. Thompson DB, Richardson JJ, DenBaars SP, Lange FF (2009) Appl Phys Express 2:042101

    Google Scholar 

Download references

Acknowledgements

E. Zolotoyabko is gratefully acknowledged for his assistance with the high-resolution XRD experiments. The authors acknowledge partial support of this research from a joint United States–Israel Binational Science Foundation Grant (BSF Grant 2008103), and the Russell Berrie Nanotechnology Institute at the Technion. BN acknowledges the support of the Irwin and Joan Jacobs Fellowship. JJR acknowledges the support of the United States National Science Foundation under Grant No. 095254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne D. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nijikovsky, B., Richardson, J.J., Garbrecht, M. et al. Microstructure of ZnO films synthesized on MgAl2O4 from low-temperature aqueous solution: growth and post-annealing. J Mater Sci 48, 1614–1622 (2013). https://doi.org/10.1007/s10853-012-6918-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6918-9

Keywords

Navigation