Skip to main content
Log in

Growth of highly oriented ZnO films by the two-step electrodeposition technique

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Compact and transparent ZnO films were deposited on the ITO/glass substrates from zinc nitrate aqueous solution by the two-step electrodeposition technique. While the first potentiostatic step was used to produce ZnO seed layer, the ZnO film growth has been done galvanostatically. Effects of the potentiostatic parameters on the crystal structure, morphology and optical properties of ZnO films were investigated. Results show that ZnO films with highly c-axis preferred orientation can been obtained when the potentiostatic deposition at −1.2 V for 15 s has been applied. Such an observation might be attributed to the etching process of ITO substrate in the diluted HCl solution. The film exhibits smooth and compact morphology, high transmittance in the visible band (>80%) and sharp absorption edge (at ∼370 nm). The analysis on the growth mechanism indicates that the short potentiostatic process prior to the film growth can produce ZnO seed layer and substitute the initial nucleation process in the conventional one-step galvanostatic deposition, thus increasing the nucleation density and preventing the formation of loose structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peulon S, Lincot D (1996) Adv Mater 8:168

    Article  Google Scholar 

  2. Gal D, Hodes G, Lincot D, Schock HW (2000) Thin Solid Films 361–362:79

    Article  Google Scholar 

  3. Izaki M, Omi T (1996) Appl Phys Lett 68:2439

    Article  CAS  Google Scholar 

  4. Stott L, Hedström J, Rückh M, Kessler J, Velthaus KO, Schock HW (1993) Appl Phys Lett 62:597

    Article  Google Scholar 

  5. Ikeda T, Sato J, Hayashi Y, Wakayamma Y, Adachi K, Nishimura H (1994) Sol Energy Mater Sol Cells 24:379

    Article  Google Scholar 

  6. Sen S, Leary DJ, Bauer CL (1982) Thin Solid Films 94:7

    Article  CAS  Google Scholar 

  7. Chen Y, Bagnall DM, Zhu Z, Sekiuchi T, Park K, Hiraga K, Yao T, Koyama S, Shen MY, Goto T (1997) J Crystal Growth 181:165

    Article  CAS  Google Scholar 

  8. Zhao JL, Li XM, Bian JM, Yu WD, Gao XG (2005) J Crystal Growth 276:507

    Article  CAS  Google Scholar 

  9. Kasuga M, Takano T, Akiyama S, Hiroshima K, Yano K, Kishiom K (2005) J Crystal Growth 275:1545

    Article  Google Scholar 

  10. David T, Goldsmith S, Boxman RL (2004) Thin Solid Films 447/448:61

    Article  Google Scholar 

  11. Bian JM, Li XM, Gao XD, Yu WD, Chen LD (2004) Appl Phys Lett 84:541

    Article  CAS  Google Scholar 

  12. Pauporté Th, Lincot D (2000) Electrochimica Acta 45:3345

    Article  Google Scholar 

  13. Mahalingam T, John VS, Raja M, Su YK, Sebastian PJ (2005) Sol Energy Mater Sol Cells 88:227

    Article  CAS  Google Scholar 

  14. Mei YF, Siu GG, Fu RKY, Chu PK, Li ZM, Tang ZK (2006) Appl Surf Sci 252:2973

    Article  CAS  Google Scholar 

  15. Marotti RE, Giorgi P, Machado G, Dalchiele EA (2006) Sol Energy Mater Sol Cells 90:2356

    Article  CAS  Google Scholar 

  16. Marotti RE, Guerra DN, Bello C, Machado G, Dalchiele EA (2004) Sol Energy Mater Sol Cells 82:85

    Article  CAS  Google Scholar 

  17. Inamdar AI, Mujawar SH, Sadale SB, Sonavane AC, Shelar MB, Shinde PS, Patil PS (2007) Sol Energy Mater Sol Cells 91:864

    Article  CAS  Google Scholar 

  18. Rairez D, Silva D, Gomez H, Riveros G, Marotti RE, Dalchiele EA, Sol Energy Mater Sol Cells (in press, doi:10.1016/j.solmat.2007.04.017)

  19. Fahoume M, Maghfoul O, Aggour M, Hartiti B, Chraibi F, Ennaoui A (2006) Sol Energy Mater Sol Cells 90:1437

    Article  CAS  Google Scholar 

  20. Peulon S, Lincot D (1998) J Electrochem Soc 145:864

    Article  CAS  Google Scholar 

  21. Goux A, Pauporté T, Chivot J, Lincot D (2005) Electrochimica Acta 50:2239

    Article  CAS  Google Scholar 

  22. Pauporté T, Lincot D (2001) J Electrochem Soc 148:C310

    Article  Google Scholar 

  23. Weng J, Zhang YJ, Han GQ, Zhang Y, Xu L, Xu J, Huang XF, Chen KJ (2005) Thin Solid Films 478:25

    Article  CAS  Google Scholar 

  24. Izaki M (1999) J Electrochem Soc 146:4517

    Article  CAS  Google Scholar 

  25. Klug HP, Alexender LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  26. Studenikin SA, Golego N, Cocivera M (1998) J Appl Phys 83:2104

    Article  CAS  Google Scholar 

  27. Fujimura N, Nishihara T, Goto S, Ito T (1991) J Crystal Growth 55:816

    Google Scholar 

  28. Pauporté Th, Lincot D (2001) J Electroanalytical Chem 517:54

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (50502038), Shanghai Natural Science Foundation (05ZR14132), Shanghai-Applied Materials Research and Development Fund (06SA07), and State Key Laboratory of High Performance Ceramics and Superfine Microstructure (SKL200505SIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Min Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, XD., Peng, F., Li, XM. et al. Growth of highly oriented ZnO films by the two-step electrodeposition technique. J Mater Sci 42, 9638–9644 (2007). https://doi.org/10.1007/s10853-007-1970-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1970-6

Keywords

Navigation