Skip to main content

Advertisement

Log in

Effect of potassium and magnesium doping on mechanical properties and in vitro degradation behavior of calcium polyphosphate

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porous crystalline calcium polyphosphate (CPP) is under investigation as a candidate bone substitute/augmentation material including incorporation in implants intended for repair of osteochondral defects. Previous studies of biphasic implants (i.e., cartilage-CPP constructs) for osteochondral defect repair have shown that porous CPP has the required features for this application including the bone substitute portion of the biphasic implant, but the porous CPP degradation rate is lower than preferred. This study investigated the effect of doping with MgCO3, MgCl2, K2CO3, or KCl at a molar ratio of M/Ca = 0.02 on properties and in vitro degradation behavior of CPP. Doping with magnesium or potassium resulted in changes in the crystallization and melting temperatures, which required adjustment of the sintering conditions for forming samples of the desired porosity level. This, in turn, resulted in higher compressive and diametral compressive (i.e., tensile) strengths of the porous-doped CPP samples compared with undoped CPP prepared to a given porosity level. For samples prepared in this study, the chemical degradation rate of porous Mg-doped CPP samples was the fastest while K doping resulted in a lower degradation rate than undoped CPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arden N, Nevitt MC (2006) Best Pract Res Clin Rheumatol 20(1):3

    Article  Google Scholar 

  2. Damien CJ (1991) J Appl Biomater 2(3):187

    Article  CAS  Google Scholar 

  3. Bohner M (2010) Mater Today 13(1–2):24

    Article  CAS  Google Scholar 

  4. Basu D, De DK, Kundu B, Mukherjee P, Nandi SK, Roy S (2010) Indian J Med Res 132(7):15

    Google Scholar 

  5. Bobyn JD, Poggie RA, Krygier JJ, Lewallen DG, Hanssen AD, Lewis RJ et al (2004) J Bone Joint Surg Am 86(2):123

    Google Scholar 

  6. Zhou J, Xia Q, Dong J, Li X, Zhou X, Fang T et al (2011) Acta Neurochir 153(1):115

    Article  Google Scholar 

  7. Singh R, Lee PD, Dashwood RJ, Lindley TC (2010) Mater Technol 25(3–4):127

    CAS  Google Scholar 

  8. Ferretti C (2008) Int J Oral Maxillofac Surg 37(3):242

    Article  CAS  Google Scholar 

  9. Barber FA, Dockery WD, Hrnack SA (2011) Arthroscopy 27(5):637

    Article  Google Scholar 

  10. Friedmann A, Dard M, Kleber B, Bernimoulin J, Bosshardt DD (2009) Clin Oral Implants Res 20(7):708

    Article  Google Scholar 

  11. Mangano C, Scarano A, Iezzi G, Orsini G (2006) J Oral Implantol 32(3):122

    Article  Google Scholar 

  12. Grynpas MD, Pilliar RM, Kandel RA, Renlund R, Filiaggi M, Dumitriu M (2002) Biomaterials 23(9):2063

    Article  CAS  Google Scholar 

  13. Kandel RA, Grynpas M, Pilliar R, Lee J, Wang J, Waldman S et al (2006) Biomaterials 27(22):4120

    Article  CAS  Google Scholar 

  14. Pilliar RM, Kandel RA, Grynpas MD, Zalzal P, Hurtig M (2007) Technol Health Care 15(1):47

    CAS  Google Scholar 

  15. Pilliar RM, Hong J and Santerre JP, assignees (2009) Method of manufacture of porous inorganic structures. United States Patent 7494614, 24 Feb 2009

  16. Qiu K, Wan CX, Zhao CS, Chen X, Tang CW, Chen YW (2006) J Mater Sci 41(8):2429. doi:10.1007/s10853-006-5182-2

    Article  CAS  Google Scholar 

  17. Ding YL, Chen YW, Qin YJ, Shi GQ, Yu XX, Wan CX (2008) J Mater Sci 19(3):1291. doi:10.1007/s10856-007-3235-y

    Article  CAS  Google Scholar 

  18. Porter NL, Pilliar RM, Grynpas MD (2001) J Biomed Mater Res 56(4):504

    Article  CAS  Google Scholar 

  19. Wang K, Chen F, Liu C, Rüssel C (2008) Mater Sci Eng C 28(8):1572

    Article  CAS  Google Scholar 

  20. Omelon S, Baer A, Coyle T, Pilliar RM, Kandel R, Grynpas M (2008) Mater Res Bull 43(1):68

    Article  CAS  Google Scholar 

  21. Pilliar RM, Filiaggi MJ, Wells JD, Grynpas MD, Kandel RA (2001) Biomaterials 22(9):963

    Article  CAS  Google Scholar 

  22. Chen F, Wang K, Liu C (2008) Appl Surf Sci 255(2):270

    Article  CAS  Google Scholar 

  23. Song W, Tian M, Chen F, Tian Y, Wan C, Yu X (2009) J Biomed Mater Res 89(2):430

    Article  Google Scholar 

  24. Song W, Wang Q, Wan C, Shi T, Markel D, Blaiser R et al (2011) J Biomed Mater Res 98B(2):255

    Article  CAS  Google Scholar 

  25. Ue J (2009) The effect of sodium doping on calcium polyphosphate. University of Toronto, Canada

    Google Scholar 

  26. Griffith EJ (1995) Phosphate fibers. Plenum Press, New York

    Google Scholar 

  27. Abbarin N (2011) Effect of potassium and magnesium doping on sintering and properties of calcium polyphosphate. University of Toronto, Canada

    Google Scholar 

  28. Omelon SJ (2006) Material properties, and in vitro and in vivo degradation of calcium polyphosphate. University of Toronto, Canada

    Google Scholar 

  29. Ropp RC (1992) Inorganic polymeric glasses. Elsevier, New York

    Google Scholar 

  30. Barsoum MW (2003) Fundamentals of ceramics. Taylor & Francis, Bristol

    Book  Google Scholar 

  31. Callister WD (2005) Fundamentals of materials science and engineering: an integrated approach, 2nd ed. John Wiley & Sons, Hoboken, NJ

Download references

Acknowledgements

This study was supported by National Sciences and Engineering Research Council of Canada (NSERC) and Canadian Institutes of Health Research (CIHR). N. A received a scholarship from Canadian arthritis network (CAN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Abbarin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbarin, N., Coyle, T.W. & Grynpas, M.D. Effect of potassium and magnesium doping on mechanical properties and in vitro degradation behavior of calcium polyphosphate. J Mater Sci 48, 1604–1613 (2013). https://doi.org/10.1007/s10853-012-6917-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6917-x

Keywords

Navigation