Skip to main content
Log in

Topology optimization of functionally graded cellular materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Design of functionally graded material (FGM), in which the mechanical property varies along one direction, is the focus of this study. It is assumed that the microstructure of the FGM is composed of a series of base cells in the variation direction and self-repeated in other directions. Bi-directional evolutionary structural optimization technique in the form of inverse homogenization is used for the design of the FGM for specified variation in bulk or shear modulus. Instead of designing a series of base cells simultaneously, the base cells are optimized progressively by considering three base cells at each stage. Thus, the proper connections between adjacent base cells can be achieved with high computational efficiency. Numerical examples demonstrate the effectiveness of the proposed method for designing microstructures of 2D and 3D FGMs with specified variation in bulk or shear modulus. The proposed algorithm can also be easily extended to design FGMs with other functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mattheck C, Bethge K (1998) Naturwissenschaften 85(1):1. doi:10.1007/s001140050443

    Article  CAS  Google Scholar 

  2. Sarkar P, Bosneaga E, Auer M (2009) J Exp Bot 60(13):3615. doi:10.1093/jxb/erp245

    Article  CAS  Google Scholar 

  3. Vincent JF (1999) J Exp Biol 202(23):3263

    CAS  Google Scholar 

  4. Koizumi M (1997) Composites Part B 28(1–2):1. doi:10.1016/s1359-8368(96)00016-9

    Article  Google Scholar 

  5. Hirai T, Chen L (1999) Mater Sci Forum 308–311:509–514. doi:10.4028/www.scientific.net/MSF.308-311.509

  6. Taylor D (2007) J Mater Sci 42:8911. doi:10.1007/s10853-007-1698-3

    Article  CAS  Google Scholar 

  7. Lakes R (1993) Nature 361:511

    Article  Google Scholar 

  8. Ichikawa K (2001) Functionally graded materials in the 21st century. Kluwer, Boston

    Google Scholar 

  9. Markworth AJ, Ramesh KS, Parks WP (1995) J Mater Sci 30(9):2183. doi:10.1007/bf01184560

    Article  CAS  Google Scholar 

  10. Birman V, Byrd LW (2007) Appl Mech Rev 60(5):195. doi:10.1115/1.2777164

    Article  Google Scholar 

  11. Zhou S, Li Q (2008) J Mater Sci 43(15):5157. doi:10.1007/s10853-008-2722-y

    Article  CAS  Google Scholar 

  12. Sigmund O (1994) Int J Solids and Struct 31(17):2313. doi:10.1016/0020-7683(94)90154-6

    Article  Google Scholar 

  13. Sigmund O (1995) Mech Mater 20(4):351. doi:10.1016/0167-6636(94)00069-7

    Article  Google Scholar 

  14. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  15. Lin C-Y, Hsiao C-C, Chen P-Q, Hollister SJ (2004) Spine 29(16):1747

    Article  Google Scholar 

  16. Chen K-Z, Feng X-A (2004) Comput Aided Des 36(1):51. doi:10.1016/s0010-4485(03)00077-0

    Article  Google Scholar 

  17. Huang X, Xie YM (2007) Finite Elem in Anal Des 43(14):1039. doi:10.1016/j.finel.2007.06.006

    Article  Google Scholar 

  18. Huang X, Xie YM (2010) Evolutionary topology optimization of continuum structures: methods and applications. Wiley, Chichester

    Book  Google Scholar 

  19. Xie YM, Steven GP (1993) Comput Struct 49(5):885. doi:10.1016/0045-7949(93)90035-c

    Article  Google Scholar 

  20. Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, London

    Book  Google Scholar 

  21. Huang X, Radman A, Xie YM (2011) Comput Mater Sci 50(6):1861. doi:10.1016/j.commatsci.2011.01.030

    Article  Google Scholar 

  22. Huang X, Xie Y, Jia B, Li Q, Zhou S (2012) Struct Multidiscip Optim. doi:10.1007/s00158-012-0766-8

    Google Scholar 

  23. Zhou S, Li Q (2008) Mater Lett 62:4022. doi:10.1016/j.matlet.2008.05.058

    Article  CAS  Google Scholar 

  24. Wang MY, Zhou S, Ding H (2004) Struct Multidiscip Optim 28(4):262. doi:10.1007/s00158-004-0436-6

    Article  Google Scholar 

  25. Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial differential equations and the calculus of variations. Springer, New York

    Google Scholar 

  26. Hassani B, Hinton E (1998) Comput Struct 69(6):707. doi:10.1016/s0045-7949(98)00131-x

    Article  Google Scholar 

  27. Hassani B, Hinton E (1998) Comput Struct 69(6):719. doi:10.1016/s0045-7949(98)00132-1

    Article  Google Scholar 

  28. Rozvany GIN, Zhou M, Birker T (1992) Struct Multidiscip Optim 4(3):250. doi:10.1007/bf01742754

    Google Scholar 

  29. Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academic Press, Orlando

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radman, A., Huang, X. & Xie, Y.M. Topology optimization of functionally graded cellular materials. J Mater Sci 48, 1503–1510 (2013). https://doi.org/10.1007/s10853-012-6905-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6905-1

Keywords

Navigation