Skip to main content
Log in

Undoped visible-light-sensitive titania photocatalyst

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Colorful rutile TiO2 was prepared by heating Ti2O3 at 550–900 °C to develop novel visible-light-sensitive and eco-friendly photocatalysts for environmental remediation under visible-light irradiation. The colors of the prepared samples, which ranged from grayish green to yellowish off-white via yellow differed from the reported colors of reduced TiO2, such as blue and black. The TiO2 prepared in this study was characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and UV–Visible spectroscopy. These measurements showed that the TiO2 contained Ti3+-interstitial sites. The TiO2 was sensitive to visible light, and calculation of the band diagram demonstrated that this visible-light absorption is caused mainly by formation of Ti3+-interstitial sites in rutile TiO2. Among the prepared samples, the TiO2 prepared by heating Ti2O3 at 700 °C shows the highest photocatalytic activity under visible-light irradiation. In addition, the sample was further and mildly ground using a bead-milling machine. The ground sample possessed higher surface area and better photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Chem Rev 95:69

    Article  CAS  Google Scholar 

  2. Hashimoto K, Irie H, Fujishima A (2005) Jpn J Appl Phys 44:8269

    Article  CAS  Google Scholar 

  3. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Sol Energy Mater Sol Cell 77:65

    Article  CAS  Google Scholar 

  4. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Appl Catal A 265:115

    Article  CAS  Google Scholar 

  5. Diwald O, Thompson TL, Zubkov T, Goralski EG, Walck SD, Yates JT (2004) J Phys Chem B 108:6004

    Article  CAS  Google Scholar 

  6. Zang L, Macyk W, Lange C, Maier WF, Antonius C, Meissner D, Kisch H (2000) Chem Eur J 6:379

    Article  CAS  Google Scholar 

  7. Arai T, Horiguchi M, Yanagida M, Gunji T, Sugihara H, Sayama K (2009) J Phys Chem C 112:6602

    Article  Google Scholar 

  8. Kim HG, Hwang DW, Lee JS (2004) J Am Chem Soc 126:8912

    Article  CAS  Google Scholar 

  9. Wang DF, Kako T, Ye J (2008) J Am Chem Soc 130:2724

    Article  CAS  Google Scholar 

  10. Kako T, Ye J (2010) J Mol Catal A 320:79

    Article  CAS  Google Scholar 

  11. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269

    Article  CAS  Google Scholar 

  12. Serpone N, Lawless D, Disdier J, Hermann JM (1994) Langmuir 10:643

    Article  CAS  Google Scholar 

  13. Miyauchi M, Takashio M, Tobimatsu H (2004) Langmuir 20:232

    Article  CAS  Google Scholar 

  14. Kako T, Yao WF, Ye J (2010) J Mater Res 25:110

    Article  CAS  Google Scholar 

  15. Xing MY, Zhang JL, Chen F, Tian BZ (2011) Chem Comm 47:4947

    Article  CAS  Google Scholar 

  16. Lee SK, Robertson PKJ, Mills A, Mcstay D (1999) J Photochem Photobiol A122:69

    Article  Google Scholar 

  17. Takeuchi K, Nakamura I, Matsumoto O, Sugihara S, Ando M, Ihara T (2000) Chem Lett 29:1354

    Article  Google Scholar 

  18. Martyanov IN, Uma S, Rodrigues S, Klaunde KJ (2004) Chem Comm 21:2476

    Article  Google Scholar 

  19. Teleki A, Pratsinis SE (2009) Phys Chem Chem Phys 11:3742

    Article  CAS  Google Scholar 

  20. Hiramatsu T, Furuta M, Matsuda T, Li C, Hirao T (2011) Appl Surf Sci 257:5480

    Article  CAS  Google Scholar 

  21. Thomas DG (1957) J Phys Chem Solids 3:229

    Article  CAS  Google Scholar 

  22. Asghara M, Mahmooda K, Alia A, Hasanb MA, Rajac MYA, Hussaind I, Willanderd M (2011) ECS Trans 35:149

    Google Scholar 

  23. Ohko Y, Fujishima A, Hashimoto K (1998) J Phys Chem B102:1724

    Google Scholar 

  24. Kako T, Zou ZG, Katagiri M, Ye JH (2007) Chem Mater 19:198

    Article  CAS  Google Scholar 

  25. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  26. Anisimov V, Zaanen J, Andersen O (1991) Phys Rev B 44:943

    Article  CAS  Google Scholar 

  27. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  29. Lany S, Zunger A (2009) Phys Rev B 80:085202

    Article  Google Scholar 

  30. Morgan BJ, Watson W (2009) Phys Rev B 80:233102

    Article  Google Scholar 

  31. Park SG, Kope BM, Nishi Y (2010) Phys Rev B 82:115109

    Article  Google Scholar 

  32. Burdett JK, Hughbanks T, Miller GJ, Richardson JW, Smith JV (1987) J Am Chem Soc 109:3639

    Article  CAS  Google Scholar 

  33. Hori Y, Hara Y, Yamamoto Y, Morimoto Y, Naitoh T (2012) Jpn J Appl Phys 51:015604

    Article  Google Scholar 

  34. Hanaor DA, Sorrell CC (2011) J Mater Sci. doi:10.1007/s10853-010-5113-0

    Google Scholar 

  35. Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K (1999) J Phys Chem B 103:2188

    Article  CAS  Google Scholar 

  36. Chen XB, Liu L, Yu PY, Mao SS (2011) Science 331:746

    Article  CAS  Google Scholar 

  37. Irie H, Watanabe Y, Hashimoto K (2003) J Phys Chem B 107:5483

    Article  CAS  Google Scholar 

  38. Cronemeyer DC (1959) Phys Rev 113:1222

    Article  CAS  Google Scholar 

  39. Nowotny MK, Sheppard LR, Bak T, Nowotny J (2008) J Phys Chem C 112:5275

    Article  CAS  Google Scholar 

  40. Zhang YZ, Xie EQ (2010) Appl Phys A 99:955

    Article  CAS  Google Scholar 

  41. Abe R, Takami H, Murakami N, Ohtani B (2008) J Am Chem Soc 130:7780

    Article  CAS  Google Scholar 

  42. Li J, Lommens P, Bruneel E, Driessche IV (2012) J Mater Sci. doi:10.1007/s10853-012-6561-5

    Google Scholar 

  43. Uchiyama S, Isobe T, Matsushita S, Nakajima K, Hara M, Nakajima A (2012) J Mater Sci. doi:10.1007/s10853-011-5803-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Kako.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kako, T., Umezawa, N., Xie, K. et al. Undoped visible-light-sensitive titania photocatalyst. J Mater Sci 48, 108–114 (2013). https://doi.org/10.1007/s10853-012-6888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6888-y

Keywords

Navigation