Skip to main content

Advertisement

Log in

Microwave synthesis of In-doped TiO2 nanoparticles for photocatalytic application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work reports on pristine anatase TiO2 photocatalyst with different indium (In) content which is prepared via a controlled and energy efficient microwave-assisted method. The structural and optical properties of photocatalyst were characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and fourier transform infrared spectroscopy (FT-IR). Average crystallite size of 12 nm with shape of pseudo-cube was obtained for In-doped TiO2 (optimum 0.10 mol%). The UV–Vis diffuse reflectance spectrum shows the absorption edge which is shifted in the visible region and slightly decreased the band gap for In–TiO2 as compared to pristine TiO2. The present research work is mainly focused on the enhancement of degradation efficiency of methyl orange (MO) by doping of Indium in TiO2 using UV light (365 nm). A 98% efficiency of photodegradation was achieved by utilizing 0.10 mol% In-doped TiO2 (1 g/dm3) at pH = 5 within 90 min. Recyclability of photocatalyst was also studied and material found to be stable up to five runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Wang, P. Jia, N. Ding, G. Pang, N. Wang, Water Air Soil Pollut. 226, 333 (2015)

    Article  Google Scholar 

  2. A. Peter, A.M. Cozmuta, C. Nicula, L.M. Cozmuta, A. Jastrzębska, A. Olszyna, L. Baia, Water Air Soil Pollut. 228, 41. (2017)

    Article  Google Scholar 

  3. R. Fagana,  D.E. McCormack, D.D. Dionysiou, S.C. Pillai, Mater Sci Semicond Process. 42, 2 (2016)

    Article  Google Scholar 

  4. A. Kmetyko, K. Mogyorosi, V. Gerse, Z. Konya, P. Pusztai, A. Dombi, K. Hernadi, Materials 7, 7022–7038 (2014)

    Article  Google Scholar 

  5. Y. Zhang, S. Guo, Z. Zheng, J. Exp. Nanosci. 8, 184–193 (2013)

    Article  Google Scholar 

  6. H. Chen, W. Fu, H. Yang, P. Sun, Y. Zhang, L. Wang, W. Zhao, X. Zhou, H. Zhao, Q. Jing, X. Qi, Y. Li, Electron. Act. 56(2), 919–924 (2010)

    Article  Google Scholar 

  7. A. Nabok, Organic and Inorganic Nanostructures. (Artech Publishing House, London, 2005)

    Google Scholar 

  8. L.D. Marco, M. Manca, R. Giannuzzi, F. Malara, G. Melcarne, G. Ciccarella, I. Zama, R. Cingolani, G. Gigli, J. Phys. Chem. C 114, 4228–4236 (2010)

    Article  Google Scholar 

  9. T.L. Thompson, J.T. Yates, Chem. Rev. 106, 4428–4453 (2006)

    Article  Google Scholar 

  10. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253–278 (2009)

    Article  Google Scholar 

  11. D.R. Baker, P.V. Kamat, Adv. Funct. Mater. 19, 805–811 (2009)

    Article  Google Scholar 

  12. Q. Zhang, W. Fan, L. Gao, Appl. Catal. B 76, 168–173 (2007)

    Article  Google Scholar 

  13. P.P. Hankare, R.P. Patil, A.V. Jadhav, K.M. Garadkar, R. Sasikala, Appl. Catal. B 107, 333–339 (2011)

    Article  Google Scholar 

  14. F. Taleshi J Mater Sci. 26, 3262–3267 (2015)

    Google Scholar 

  15. M.G. Krishna, M. Vinjanampati, D.D. Purkayastha, Euro. Phys. J. Appl. Phys. 62, 30001 (2013)

    Article  Google Scholar 

  16. S.M. Dizaj, F. Lotfipour, M.B. Jalali, M.H. Zarrintan, K. Adibkia, Mater. Sci. Eng. C 44, 278–284 (2014)

    Article  Google Scholar 

  17. M.B. Suwarnkar, A.N. Kadam, G.V. Khade, N.L. Gavade, K.M. Garadkar, J. Mater. Sci. 27, 843–851 (2016)

    Google Scholar 

  18. M. Popa, E. Indrea, P. Pascuţa, V. Coşoveanu, I.C. Popescu, V. Danciu, Rev. Roum. Chim. 55, 369–375 (2010)

    Google Scholar 

  19. E. Wang, P. Zhang, Y. Chen, Z. Liu, T. He, Y.J. Cao, Mater. Chem. 22, 14443–14449 (2012)

    Article  Google Scholar 

  20. D. Shchukin, S. Poznyak, A. Kulak, P. Pichat, J. Photochem. Photobio. A 162, 423–430 (2004)

    Article  Google Scholar 

  21. S.K. Poznyak, D.V. Talapin, A.I Kulak, J. Phy. Chem. B 105, 4816–4823 (2001)

    Article  Google Scholar 

  22. V.R. Gonzalez, A.M. Rodrıguez, M. May, F. Tzompantzi, R.J. Gomez, Photochem. Photobio. A 193, 266–270 (2008)

    Article  Google Scholar 

  23. E. Wang, W. Yang, Y.J. Cao, Phy. Chem. C. 113, 20912–20917 (2009)

    Article  Google Scholar 

  24. J.V. Smith (ed), X-ray Powder Data File. (American Society for Testing Materials, Pennsylvania, 1960)

    Google Scholar 

  25. B.M. Reddy, I. Ganesh, A. Khan, Appl. Catal. A 248, 169–180 (2003)

    Article  Google Scholar 

  26. Y. Cao, W. Yang, W. Zhang, G. Liu, P. Yue, New J. Chem. 28, 218 (2004)

    Article  Google Scholar 

  27. H. Okushita, T. Shimidzu, Bull. Chem Soc Jpn. 63 920 (1990)

    Article  Google Scholar 

  28. P.K. Labhane, L.B. Patle, V.R. Huse, G.H. Sonawane, S.H. Sonawane, Chem. Phy. Lett. 661 13–19 (2016)

    Article  Google Scholar 

  29. G. Liu, H.G. Yang, X. Wang, H. Cheng, H. Lu, L. Wang, G.Q. Lu, H.M. Cheng, J. Phys. Chem. 113, 21784 (2009)

    Google Scholar 

  30. A.N. Murashkevich, A.S. Lavitskaredrafya, T.I. Barannikova, I.M. Zharskii, J. Appl. Spectro. 75, 730–734 (2008)

    Article  Google Scholar 

  31. S. Harinath Babu, N. Madhusudhana Rao, S. Kaleemulla, G. Amarendra, C. Krishnamoorthi, Bull. Mater. Sci. 40, 17–23 (2017)

    Article  Google Scholar 

  32. G.V. Khade, M.B. Suwarnkar, N.L. Gavade, K.M. Garadkar, J. Mater. Sci. 27, 6425–6432 (2016)

    Google Scholar 

  33. S.S. Mandal, A.J. Bhattacharyya, J. Chem. Sci. 124, 969–978 (2012)

    Article  Google Scholar 

  34. V. Mirkhani, S. Tangestaninejad, M. Moghadam, M.H. Habibi, A. Rostami-Vartooni, J. Iran. Chem. Soc. 6, 578–587 (2009)

    Article  Google Scholar 

  35. X. Wang, P. Li, X.X. Han, Y. Kitahama, B. Zhao, Y. Ozaki,   Nanoscale (2017). doi:10.1039/C7NR03839A

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to DST, New Delhi for financial support under Major Research Project (SR/S1/PC/0041/2010). Authors are also thankful to SAIF-NEHU, Shillong for providing TEM Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Garadkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwarnkar, M.B., Khade, G.V., Babar, S.B. et al. Microwave synthesis of In-doped TiO2 nanoparticles for photocatalytic application. J Mater Sci: Mater Electron 28, 17140–17147 (2017). https://doi.org/10.1007/s10854-017-7641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7641-8

Navigation