Skip to main content
Log in

Thermal and electrical stability of TaN x diffusion barriers for Cu metallization

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Amorphous TaN x thin films (14 and 62 nm) were deposited by reactive sputtering on Si substrates. Crystallization and the metallurgical failure mechanism for Si/TaN x /Cu metallization stacks were investigated by resistivity measurements, X-ray diffraction analysis, detailed electron microscopy and elemental depth profiling on samples annealed in 5 %H2/95 %N2 gas for 30 min at various temperatures ranging from 300 to 900 °C. Amorphous TaN x thin films crystallized at 600 °C to hexagonal Ta2N by a polymorphous transformation. Depending on film thickness, polycrystalline Ta2N diffusion barriers were effective up to 700–800 °C. Failure occurred by diffusion of Cu to the Si/TaN x interface to form Cu3Si particles followed by outdiffusion of Si and formation of Cu3Si and TaSi2 precipitates on the outer surface. The TaN x barriers were integrated in metal–oxide–semiconductor devices (Cu/10 nm TaN x /26 nm SiO2/Si) to evaluate their electrical failure after bias-temperature-stress (BTS) testing using capacitance–voltage and current–voltage measurements. The shift in flat-band voltage and the leakage current were monitored before and after BTS. The electrical test results were compared with compositional and morphological information obtained from elemental depth profiling and electron microscopy. No evidence of Cu diffusion to SiO2 was found for capacitors with large leakage currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zant PV (2004) Microchip fabrication. McGraw-Hill, New York, p 401

  2. Wong HY, Mohd Shukor NF, Amin N (2007) Microelectron J 38:777

    Article  CAS  Google Scholar 

  3. Istratov AA, Flink C, Hieslmair H, Weber ER, Heiser T (1998) Phys Rev Lett 81:1243

    Article  CAS  Google Scholar 

  4. Istratov AA, Weber ER (2002) J Electrochem Soc 149:G21

    Article  CAS  Google Scholar 

  5. Wang MT, Lin YC, Chen MC (1998) J Electrochem Soc 145:2538

    Article  CAS  Google Scholar 

  6. Burte EP, Aderhold W (1997) Solid-State Electron 41:1021

    Article  CAS  Google Scholar 

  7. Balluffi RW, Bkakely JM (1975) Thin Solid Films 25:363

    Article  CAS  Google Scholar 

  8. Shewmon P (1989) Diffusion in solids. The Minerals, Metals & Materials Society, Warrendale, PA

    Google Scholar 

  9. Wang H, Tiwari A, Zhang X (2002) Appl Phys Lett 81:1453

    Article  CAS  Google Scholar 

  10. Okamoto H (2008) J Phase Equilib Diffus 29:291

    Article  CAS  Google Scholar 

  11. Violet P, Blanquet E, Le Bacq O (2006) Microelectron Eng 83:2077

    Article  CAS  Google Scholar 

  12. Sun X, Kolawa E, Chen J, Reid JS, Nicolet M (1993) Thin Solid Films 236:347

    Article  CAS  Google Scholar 

  13. Subramanian PR, Laughlin DE (1989) Bull Alloy Phase Diagr 10:652

    Article  CAS  Google Scholar 

  14. Zhou J, Chen H, Li Y (2007) Trans Nonferrous Met Soc China 17:733

    Article  CAS  Google Scholar 

  15. Kaloyeros AE, Eisenbraun ET, Dunn K, van der Straten O (2011) Chem Eng Commun 198:1453

    Article  CAS  Google Scholar 

  16. Riekkinen T, Molarius J, Laurila T, Nurmela A, Suni I, Kivilahti JK (2002) Microelectron Eng 64:289

    Article  CAS  Google Scholar 

  17. Wang JH, Chen LJ, Lu ZC, Hsiung CS, Hsieh WY, Yew TR (2002) J Vac Sci Technol B 20:1522

    Article  CAS  Google Scholar 

  18. Chen GS, Lee PY, Chen ST (1999) Thin Solid Films 353:264

    Article  CAS  Google Scholar 

  19. Tsukimoto S, Moriyama M, Murakami M (2004) Thin Solid Films 460:222

    Article  CAS  Google Scholar 

  20. Stavrev M, Fischer D, Wenzel C, Drescher K, Mattern N (1997) Thin Solid Films 307:79

    Article  CAS  Google Scholar 

  21. Nie HB, Xu SY, Wang SJ, You LP, Yang Z, Ong CK, Li J, Liew TYF (2001) Appl Phys A Mater Sci Process 73:229

    Article  CAS  Google Scholar 

  22. Chung HC, Liu CP (2006) Surf Coat Technol 200:3122

    Article  CAS  Google Scholar 

  23. Hecker M, Fischer D, Hoffmann V (2002) Thin Solid Films 414:184

    Article  CAS  Google Scholar 

  24. Wu WF, Ou KL, Chou CP, Wu CC (2003) J Electrochem Soc 150:G83

    Article  CAS  Google Scholar 

  25. Kumar M, Rajkumar, Kumar D, Paul AK (2005) Microelectron Eng 82:53

    Article  CAS  Google Scholar 

  26. Wieser E, Peikert M, Wenzel C, Schreiber J, Bartha JW, Bendjus B, Melov VV, Reuther H, Mücklich A, Adolphi B, Fischer D (2002) Thin Solid Films 410:121

    Article  CAS  Google Scholar 

  27. Holloway K, Fryer PM, Cabral C Jr, Harper JME, Bailey PJ, Kelleher KH (1992) J Appl Phys 71:5433

    Article  CAS  Google Scholar 

  28. Nazon J, Beger MH, Sarradin J, Tedenac JC, Frety N (2009) Plasma Process Polym 6:S844

    Article  CAS  Google Scholar 

  29. Nazon J, Fraisse B, Sarradin J, Fries SG, Tedenac JC, Frety N (2008) Appl Surf Sci 254:5670

    Article  CAS  Google Scholar 

  30. Oku T, Kawakami E, Uekubo M, Takahiro K, Yamaguchi S, Murakami M (1996) Appl Surf Sci 99:265

    Article  CAS  Google Scholar 

  31. Bai P, Yang GR, You L, Lu TM, Knorr DB (1990) J Mater Res 5:989

    Article  CAS  Google Scholar 

  32. Nakao SI, Numata M, Ohmi T (1999) Jpn J Appl Phys, Part 1 38:2401

    Article  CAS  Google Scholar 

  33. Yang WL, Wu WF, Liu DG, Wu CC, Ou KL (2001) Solid-State Electron 45:149

    Article  CAS  Google Scholar 

  34. Kizil H, Steinbrüchel C (2004) Thin Solid Films 449:158

    Article  CAS  Google Scholar 

  35. Olesinski RW, Abbaschian GJ (1986) Bull Alloy Phase Diag 7:170

    Article  CAS  Google Scholar 

  36. Wendt H, Cerva H, Lehmann V, Pamler W (1989) J Appl Phys 65:2402

    Article  CAS  Google Scholar 

  37. Williams DB, Carter CB (2009) Transmission electron microscopy: A textbook for materials science, 2nd edn. Springer, New York

    Google Scholar 

  38. Thornton JA (1977) Annu Rev Mater Sci 7:239

    Article  CAS  Google Scholar 

  39. Chen Z, Misra V, Haggerty RP, Stemmer S (2004) Phys Status Solidi B 241:2253

    Article  CAS  Google Scholar 

  40. Kageyama M, Abe K, Harada Y, Onoda H (1998) Proc Mater Res Soc Symp 514:91

    Article  CAS  Google Scholar 

  41. Solberg JK (1978) Acta Crystallogr A 34:684

    Article  Google Scholar 

  42. Mader S (1966) In: Margolin H (ed) Recrystallization, grain growth and textures. American Society for Metals, Materials Park, p 523

  43. Harper JME, Charai A, Stolt L, d’Heurle FM, Fryer PM (1990) Appl Phys Lett 56:2519

    Article  CAS  Google Scholar 

  44. Liu CS, Chen LJ (1995) Thin Solid Films 262:187

    Article  CAS  Google Scholar 

  45. Hafner J (1981) In: Gutherodt HJ, Beck H (eds) Topics in applied physics. Springer, Berlin, p 93

    Google Scholar 

  46. Kim KS, Joo Y, Kim KB, Kwon JY (2006) J Appl Phys 100:063317-1

    Google Scholar 

  47. Hu CC (2010) Modern semiconductor devices for integrated circuits. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  48. Suwwan De Felipe T, Murarka SP, Bedell S, Lanford WA (1998) Thin Solid Films 335:49

    Article  CAS  Google Scholar 

  49. Fisher I, Eizenberg M (2008) Thin Solid Films 516:4111

    Article  CAS  Google Scholar 

  50. Loke ALS, Ryu C, Yue CP, Cho JSH, Wong SS (1996) IEEE Electron Device Lett 17:549

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Sciences and Engineering Research Council (NSERC) of Canada for providing research funding through a Strategic Project Grant and to Micralyne Inc. and Glen Fitzpatrick for supplying the metallized wafers and for valuable discussions. In addition, the Alberta Centre for Surface Engineering and Science (ACSES) is acknowledged for providing the SIMS analysis. The authors would also like to thank Dr Douglas Barlage from University of Alberta for providing access to the semiconductor analyzer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neda Dalili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalili, N., Liu, Q. & Ivey, D.G. Thermal and electrical stability of TaN x diffusion barriers for Cu metallization. J Mater Sci 48, 489–501 (2013). https://doi.org/10.1007/s10853-012-6763-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6763-x

Keywords

Navigation