Skip to main content
Log in

Preparation and characterization of La1−x Sr x FeO3 materials and their formaldehyde gas-sensing properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

La1−x Sr x FeO3 (x = 0.0–1.0) nanoparticles have been synthesized by a sol–gel method. The samples are characterized by thermogravimetric/differential thermal analysis (TG/DTA), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The La1−x Sr x FeO3 (x = 0.0–1.0) materials have been sintered at 650 °C. Both the structural properties and phase transitions with increasing strontium content in La1−x Sr x FeO3 are presented by analysis of XRD data. Formaldehyde gas-sensing properties of La1−x Sr x FeO3 have been investigated. The experimental results show that the optimum operating temperatures of La1−x Sr x FeO3 varies with Sr content of x. Among all the samples, La0.7Sr0.3FeO3 shows a maximum response to formaldehyde. Finally, the formaldehyde gas-sensing mechanism has been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Soffritti M, Maltoni C, Maffei F, Biagi R (1989) Toxicol Ind Health 5:699. doi:10.1177/074823378900500510

    CAS  Google Scholar 

  2. Songur A, Ozen OA, Sarsilmaz M (2010) Rev Environ Contam Toxicol 203:105. doi:10.1007/978-1-4419-1352-4_3

    Article  CAS  Google Scholar 

  3. Thrasher JD, Broughton A, Madison R (1990) Arch Environ Health 45:217. doi:10.1080/00039896.1990.9940805

    Article  CAS  Google Scholar 

  4. Subramaniam RP, Chen C, Crump KS, DeVoney D, Fox JF, Portier CJ, Schlosser PM, Thompson CM, White P (2008) Risk Anal 28:907. doi:10.1111/j.1539-6924.2008.01083.x

    Article  Google Scholar 

  5. Kuijpers ATJM, Neele J (1983) Anal Chem 55:390. doi:10.1021/ac00253a052

    Article  CAS  Google Scholar 

  6. Hunter MC, Bartle KD, Seakins PW, Lewis AC (1999) Anal Commun 36:101. doi:10.1039/A809762C

    Article  CAS  Google Scholar 

  7. Septon JC, Ku JC (1982) Am Ind Hyg Assoc J 43:845. doi:10.1080/15298668291410675

    Article  CAS  Google Scholar 

  8. Kim S, Kim HJ (2005) Bioresour Technol 96:1457. doi:10.1016/j.biortech.2004.12.003

    Article  CAS  Google Scholar 

  9. Dirksen JA, Duval K, Ring TA (2001) Sens Actuators B 80:106. doi:10.1016/S0925-4005(01)00898-X

    Article  Google Scholar 

  10. Xu JQ, Jia XH, Lou XD, Xi GX, Han JJ, Gao QH (2007) Sens Actuators B 120:694. doi:10.1016/j.snb.2006.03.033

    Article  Google Scholar 

  11. Chen T, Liu QJ, Zhou ZL, Wang YD (2008) Sens Actuators B 131:301. doi:10.1016/j.snb.2007.11.025

    Article  Google Scholar 

  12. Lv P, Tang ZA, Yu J, Zhang FT, Wei GF, Huang ZX, Hu Y (2008) Sens Actuators B 132:74. doi:10.1016/j.snb.2008.01.018

    Article  Google Scholar 

  13. Bai ZK, Xie CS, Hu ML, Zhang SP (2008) Physica E 41:235. doi:10.1016/j.physe.2008.07.019

    Article  CAS  Google Scholar 

  14. Wang J, Liu L, Cong SY, Qi JQ, Xu BK (2008) Sens Actuators B 134:1010. doi:10.1016/j.snb.2008.07.010

    Article  Google Scholar 

  15. Ruan QJ, Zhang WD (2008) Mater Lett 62:4303. doi:10.1016/j.matlet.2008.07.012

    Article  CAS  Google Scholar 

  16. Polini R, Pamio A, Traversa E (2004) J Eur Ceram Soc 24:1365. doi:10.1016/S0955-2219(03)00592-2

    Article  CAS  Google Scholar 

  17. Hien NT, Thuy NP (2002) Phys B 319:168. doi:10.1016/S0921-4526(02)01118-3

    Article  CAS  Google Scholar 

  18. Therese GHA, Dinamani M, Kamath PV (2005) J Appl Electrochem 35:459. doi:10.1007/s10800-004-8346-2

    Article  CAS  Google Scholar 

  19. Vladimirova E, Vassiliev V, Nossov A (2001) J Mater Sci 36:1481. doi:10.1023/A:1017548813705

    Article  CAS  Google Scholar 

  20. Lee S, Lee KS, Woo SK, Kim JW, Ishihara T, Kim DK (2003) Solid State Ionics 158:287. doi:10.1016/S0167-2738(02)00821-4

    Article  CAS  Google Scholar 

  21. Manoharan SS, Patil KC (1993) J Solid State Chem 102:267. doi:10.1006/jssc.1993.1031

    Article  CAS  Google Scholar 

  22. Woo K, Choi GJ, Sim SJ, Cho YS, Kim YD (2000) J Mater Sci 35:4539. doi:10.1023/A:1004868621334

    Article  CAS  Google Scholar 

  23. Lu H, Tong J, Cong Y, Yang W (2005) Catal Today 104:154. doi:10.1016/j.cattod.2005.03.078

    Article  CAS  Google Scholar 

  24. Liu J, Co AC, Paulson S, Birss VI (2006) Solid State Ionics 177:377. doi:10.1016/j.ssi.2005.11.005

    Article  CAS  Google Scholar 

  25. Leontiou AA, Ladavos AK, Giannakas AE, Bakas TV, Pomonis PJ (2007) J Catal 251:103. doi:10.1016/j.jcat.2007.07.012

    Article  CAS  Google Scholar 

  26. Kishimoto H, Sakai N, Horita T, Yamaji K, Brito ME, Yokokawa H (2008) Solid State Ionics 179:1338. doi:10.1016/j.ssi.2007.12.009

    Article  CAS  Google Scholar 

  27. Pena MA, Fierro JLG (2001) Chem Rev 101:1981. doi:10.1021/cr980129f

    Article  CAS  Google Scholar 

  28. Itagaki Y, Mori M, Hosoya Y, Aono H, Sadaoka Y (2007) Sens Actuators B 122:315. doi:10.1016/j.snb.2006.06.001

    Article  Google Scholar 

  29. Zhao M, Peng H, Hu JF, Han ZX (2008) Sens Actuators B 129:953. doi:10.1016/j.snb.2007.10.012

    Article  Google Scholar 

  30. Wang J, Wu FQ, Shi KH, Wang XH, Sun PP (2004) Sens Actuators B 99:586. doi:10.1016/j.snb.2004.01.012

    Article  Google Scholar 

  31. Songn P, Wang Q, Zhang Z, Yang ZX (2010) Sens Actuators B 147:248. doi:10.1016/j.snb.2010.03.006

    Article  Google Scholar 

  32. Fan HT, Xu XJ, Ma XK, Zhang T (2011) Nanotechnology 22:115502. doi:10.1088/0957-4484/22/11/115502

    Article  Google Scholar 

  33. Liu L, Zhang T, Qi Q, Zhang L, Chen WY, Xu BK (2007) Solid-State Electron 51:1029. doi:10.1016/j.sse.2007.05.016

    Article  CAS  Google Scholar 

  34. Song P, Hu JF, Qin HW, Zhang L, An K (2004) Mater Lett 58:2610. doi:10.1016/j.matlet.2004.03.028

    Article  CAS  Google Scholar 

  35. Zhang L, Hu J, Song P, Qin H, Liu X, Jiang M (2005) Phys B 370:259. doi:10.1016/j.physb.2005.09.020

    Article  CAS  Google Scholar 

  36. Huang SX, Qin HW, Song P, Liu X, Li L, Zhang R, Hu J, Yan H, Jiang M (2007) J Mater Sci 42:9973. doi:10.1007/s10853-007-1991-1

    Article  CAS  Google Scholar 

  37. Liu X, Cheng B, Qin HW, Song P, Huang SX, Zhang R, Hu JF, Jiang MH (2008) Sens Actuators B 129:53. doi:10.1016/j.snb.2007.07.102

    Article  Google Scholar 

  38. Pokhrel S, Huo LH, Zhao H, Gao S (2007) Sens Actuators B 122:321. doi:10.1016/j.snb.2006.06.003

    Article  Google Scholar 

  39. Wang J, Zhang P, Qi JQ, Yao PJ (2009) Sens Actuators B 136:399. doi:10.1016/j.snb.2008.12.056

    Article  Google Scholar 

  40. Augustin CO, Selvan RK, Nagaraj R, Berchmans LJ (2005) Mater Chem Phys 89:406. doi:10.1016/j.matchemphys.2004.09.028

    Article  CAS  Google Scholar 

  41. Li KY, Wu FQ, Wang DJ, Xie TF, Li TJ (2001) Mater Chem Phys 71:34. doi:10.1016/S0254-0584(00)00524-1

    Article  CAS  Google Scholar 

  42. Li SD, Jing LQ, Fu W, Yang LB, Xin BF, Fu HG (2007) Mater Res Bull 42:203. doi:10.1016/j.materresbull.2006.06.010

    Article  CAS  Google Scholar 

  43. Tas AC, Majewski PJ, Aldinger F (2000) J Am Ceram Soc 83:2954. doi:10.1111/j.1151-2916.2000.tb01666.x

    Article  CAS  Google Scholar 

  44. Karpinski J, Schwer H, Meijer GI, Conder K, Kopnin EM, Rossel C (1997) Physica C 274:99. doi:10.1016/S0921-4534(96)00670-3

    Article  CAS  Google Scholar 

  45. Cizauskaite S, Kareiva A (2008) Cent Eur J Chem 6:456. doi:10.2478/s11532-008-0045-0

    Article  CAS  Google Scholar 

  46. Gomes J, Pires AM, Serra OA (2006) J Fluoresc 16:411. doi:10.1007/s10895-006-0090-z

    Article  CAS  Google Scholar 

  47. Kale GM, Jacob KT (1989) Solid State Ionics 34:247. doi:10.1016/0167-2738(89)90450-5

    Article  CAS  Google Scholar 

  48. Ahn MW, Park KS, Heo JH, Park JG, Kim DW, Choi KJ, Lee JH, Hong SH (2008) Appl Phys Lett 93:263103. doi:10.1063/1.3046726

    Article  Google Scholar 

  49. Li JG, Kou XL, Qin Y, He HY (2002) Phys Stat Sol (a) 191:255. doi:10.1002/1521-396X(200205)191:1<255:AID-PSSA255>3.0.CO;2-N

    Article  CAS  Google Scholar 

  50. Xu JQ, Pan QY, Shun YA, Tian ZZ (2000) Sens Actuators B 66:277. doi:10.1016/S0925-4005(00)00381-6

    Article  Google Scholar 

  51. Guo PF, Pan HB (2006) Sens Actuators B 114:762. doi:10.1016/j.snb.2005.07.040

    Article  Google Scholar 

  52. Yamazoe N (1991) Sens Actuators B 5:7. doi:10.1016/0925-4005(91)80213-4

    Article  Google Scholar 

  53. Zhao L, Qi JQ, Wang J, Yao PJ (2012) Meas Sci Technol 23:085101. doi:10.1088/0957-0233/23/8/085101

    Article  Google Scholar 

  54. Liu X, Cheng B, Hu JF, Qin HW, Jiang MH (2008) Sens Actuators B 133:340. doi:10.1016/j.snb.2008.02.033

    Article  Google Scholar 

  55. Chen YC, Chang YH, Chen GJ, Chai YL, Ray DT (2003) Sens Actuators B 96:82. doi:10.1016/S0925-4005(03)00489-1

    Article  Google Scholar 

  56. Chen T, Zhou ZL, Wang YD (2009) Sens Actuators B 143:124. doi:10.1016/j.snb.2009.09.031

    Article  Google Scholar 

Download references

Acknowledgements

This subject was supported by the National Natural Science Foundation of China (61176068, 61131004). The authors thank Mr. Xing-Ru Chen for his help in the experiments. The authors are grateful to the anonymous reviewers for their valuable corrections and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, PJ., Wang, J., Chu, WL. et al. Preparation and characterization of La1−x Sr x FeO3 materials and their formaldehyde gas-sensing properties. J Mater Sci 48, 441–450 (2013). https://doi.org/10.1007/s10853-012-6758-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6758-7

Keywords

Navigation