Skip to main content
Log in

Bacterial cellulose as source for activated nanosized carbon for electric double layer capacitors

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A nanosized carbonaceous material was derived from bacterial cellulose (BC). BC, which is produced by bacteria as nanosized material, possesses high degree of crystallinity of 90 %, was pyrolysed at 950 °C and physically activated with CO2 to produce a nanosized activated carbon material. The pyrolysis of BC yielded a carbonaceous material (carbon yield of between 2 and 20 %) with a relatively low D- to G-band ratio (between 2.2 and 2.8), indicating that the carbonaceous material possesses a graphitic structure. Two different BC materials were pyrolysed—a loose fibrous (freeze-dried) and dense paper form. It was observed that a carbon nanofibre-like material was produced by the pyrolysis of the loose fibrous form of BC. The electric double layer (EDL) capacitance and the area-normalised specific capacitance in K2SO4 solution were as high as 42 F g−1 and 1,617 F cm−2, respectively. The EDL capacitance was also compared to commercially available activated carbon (YP-50F).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Staiti P, Minutoli M, Lufrano F (2002) Electrochim Acta 47:2795

    Article  CAS  Google Scholar 

  2. Shi H (1996) Electrochim Acta 41:1633

    Article  CAS  Google Scholar 

  3. Taniguchi A, Fujioka N, Ikoma M, Ohta A (2001) J Power Sources 100:117

    Article  CAS  Google Scholar 

  4. Scrosati B, Garche J (2010) J Power Sources 195:2419

    Article  CAS  Google Scholar 

  5. Jayalakshmi M, Balasubramanian K (2008) Int J Electrochem Sci 3:1196

    CAS  Google Scholar 

  6. Lee J, Yoon S, Hyeon T, Oh SM, Kim KB (1999) Chem Commun 21:2177

    Article  Google Scholar 

  7. Lee SI, Mitani S, Park CW, Yoon SH, Korai Y, Mochida I (2005) J Power Sources 139:379

    Article  CAS  Google Scholar 

  8. Xu B, Wu F, Su YF, Cao GP, Chen S, Zhou ZM, Yang YS (2008) Electrochim Acta 53:7730

    Article  CAS  Google Scholar 

  9. Kotz R, Carlen M (2000) Electrochim Acta 45:2483

    Article  CAS  Google Scholar 

  10. Kotz R, Gobrecht J, Stucki S, Pixley R (1986) Electrochim Acta 31:169

    Article  Google Scholar 

  11. Ardizzone S, Fregonara G, Trasatti S (1990) Electrochim Acta 35:263

    Article  CAS  Google Scholar 

  12. Naoi K, Suematsu S (1998) Denki Kagaku 66:896

    Google Scholar 

  13. Arbizzani C, Mastragostino M, Meneghello L (1996) Electrochim Acta 41:21

    Article  CAS  Google Scholar 

  14. Rodriguez-Reinoso F, Molina-Sabio M (1992) Carbon 30:1111

    Article  CAS  Google Scholar 

  15. Frackowiak E, Beguin F (2001) Carbon 39:937

    Article  CAS  Google Scholar 

  16. Honda Y, Ono T, Takeshige M, Morihara N, Shiozaki H, Kitamura T, Yoshikawa K, Morita M, Yamagata M, Ishikawa M (2009) Electrochem Solid State Lett 12:A45

    Article  CAS  Google Scholar 

  17. Mukhopadhyay I, Suzuki Y, Kawashita T, Yoshida Y, Kawasaki S (2010) J Nanosci Nanotechnol 10:4089

    Article  CAS  Google Scholar 

  18. Yamada Y, Kimizuka O, Tanaike O, Machida K, Suematsu S, Tamamitsu K, Saeki S, Hatori H (2009) Electrochem Solid State Lett 12:K14

    Article  CAS  Google Scholar 

  19. Kalpana D, Cho SH, Lee SB, Lee YS, Misra R, Renganathan NG (2009) J Power Sources 190:587

    Article  CAS  Google Scholar 

  20. Li X, Han C, Chen X, Shi C (2010) Microporous Mesoporous Mater 131:303

    Article  CAS  Google Scholar 

  21. Liu W, Soneda Y, Kodama M, Yamashita J, Hatori H (2007) Carbon 45:2759

    Article  CAS  Google Scholar 

  22. Klijanienko A, Lorenc-Grabowska E, Gryglewicz G (2008) Bioresour Technol 99:7208

    Article  CAS  Google Scholar 

  23. El-Hendawy ANA, Alexander AJ, Andrews RJ, Forrest G (2008) J Anal Appl Pyrolysis 82:272

    Article  CAS  Google Scholar 

  24. Girgis BS, Smith E, Louis MM, El-Hendawy ANA (2009) J Anal Appl Pyrol 86:180

    Article  CAS  Google Scholar 

  25. Deng H, Yang L, Tao GH, Dai JL (2009) J Hazard Mater 166:1514

    Article  CAS  Google Scholar 

  26. Phan NH, Rio S, Faur C, Le Coq L, Le Cloirec P, Nguyen TH (2006) Carbon 44:2569

    Article  CAS  Google Scholar 

  27. Tan IAW, Hameed BH, Ahmad AL (2007) Chem Eng J 127:111

    Article  CAS  Google Scholar 

  28. Tan IAW, Ahmad AL, Hameed BH (2008) J Hazard Mater 153:709

    Article  CAS  Google Scholar 

  29. Ncibi MC, Jeanne-Rose V, Mahjoub B, Jean-Marius C, Lambert J, Ehrhardt JJ, Bercion Y, Seffen M, Gaspard S (2009) J Hazard Mater 165:240

    Article  CAS  Google Scholar 

  30. Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown RM (2004) Cellulose 11:475

    Article  CAS  Google Scholar 

  31. Kim DY, Nishiyama Y, Wada M, Kuga S (2001) Carbon 39:1051

    Article  CAS  Google Scholar 

  32. Kuga S, Kim DY, Nishiyama Y, Brown RM (2002) Mol Cryst Liq Cryst 387:237

    Google Scholar 

  33. Shopsowitz KE, Hamad WY, MacLachlan MJ (2011) Angew Chem Int Ed 50:10991. doi:10.1002/anie.201105479

    Article  CAS  Google Scholar 

  34. Silva R, Al-Sharab J, Asefa T (2012) Angew Chem Int Ed. doi:10.1002/anie.201201742

    Google Scholar 

  35. Lee KY, Blaker JJ, Bismarck A (2009) Compos Sci Technol 69:2724

    Article  CAS  Google Scholar 

  36. Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Biosci Biotechnol Biochem 59:1498

    Article  CAS  Google Scholar 

  37. Knight DS, White WB (1989) J Mater Res 4:385

    Article  CAS  Google Scholar 

  38. Baldan MR, Almeida EC, Azevedo AF, Goncalves ES, Rezende MC, Ferreira NG (2007) Appl Surf Sci 254:600

    Article  CAS  Google Scholar 

  39. Tashima D, Taniguchi M, Fujikawa D, Kijima T, Otsubo M (2009) Mater Chem Phys 115:69

    Article  CAS  Google Scholar 

  40. Show Y, Imaizumi K (2006) Diam Relat Mat 15:2086

    Article  CAS  Google Scholar 

  41. Huidobro A, Pastor AC, Rodriguez-Reinoso F (2001) Carbon 39:389

    Article  CAS  Google Scholar 

  42. Hunter RJ (1993) Introduction to modern colloid science. Oxford University Press Inc., New York

    Google Scholar 

  43. Bismarck A, Wuertz C, Springer J (1999) Carbon 37:1019

    Article  CAS  Google Scholar 

  44. Fuente E, Menendez JA, Suarez D, Montes-Moran MA (2003) Langmuir 19:3505

    Article  CAS  Google Scholar 

  45. Ishimaru K, Hata T, Bronsveld P, Meier D, Imamura Y (2007) J Mater Sci 42:122. doi:10.1007/s10853-006-1042-3

    Article  CAS  Google Scholar 

  46. Oberlin A, Villey M, Combaz A (1980) Carbon 18:347

    Article  CAS  Google Scholar 

  47. Villey M, Oberlin A, Combaz A (1979) Carbon 17:77

    Article  CAS  Google Scholar 

  48. Julien F, Baudu M, Mazet M (1998) Water Res 32:3414

    Article  CAS  Google Scholar 

  49. Seifert M, Hesse S, Kabrelian V, Klemm D (2004) J Polym Sci Polym Chem 42:463

    Article  CAS  Google Scholar 

  50. Cheng K-C, Catchmark JM, Demirci A (2009) J Bio Eng 3:12. doi:10.1186/1754-1611-3-12

    Article  Google Scholar 

  51. Um IC, Ki CS, Kweon HY, Lee KG, Ihm DW, Park YH (2004) Int J Biol Macromol 34:107

    Article  CAS  Google Scholar 

  52. Plaisantin H, Pailler R, Guette A, Daude G, Petraud M, Barbe B, Birot M, Pillot JP, Olry P (2001) Compos Sci Technol 61:2063

    Article  CAS  Google Scholar 

  53. Morgan P (2005) Carbon fibers and their composites. CRC Press-Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  54. Wang Y, Serrano S, Santiago-Aviles JJ (2003) Synth Met 138:423

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the UK Engineering and Physical Research Council (EPSRC) for funding KYL (EP/F028946/1) and the Challenging Engineering programme of the EPSRC for funding JJB (EP/E007538/1). The authors would like to thank Prof. Marc Anderson from the University of Wisconsin, Madison USA for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bismarck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KY., Qian, H., Tay, F.H. et al. Bacterial cellulose as source for activated nanosized carbon for electric double layer capacitors. J Mater Sci 48, 367–376 (2013). https://doi.org/10.1007/s10853-012-6754-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6754-y

Keywords

Navigation