Skip to main content
Log in

Electrical, optical, and thermal properties of Sn-doped phase change material Ge2Sb2Te5

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, effect of Sn on the electrical, optical, and thermal properties of Ge2Sb2Te5 is studied. Ge2Sb2Te5, Ge1.55Sb2Te5Sn0.45, and Ge1.1Sb2Te5Sn0.9 alloys are prepared by melt quenching technique and their thin films are prepared by thermal evaporation on glass substrates. These materials are then characterized by differential scanning calorimetry, X-ray diffraction, optical method, and impedance measurements. Doping with Sn maintains the NaCl-type crystalline structure of Ge2Sb2Te5. Activation energy (E a) for crystallization is calculated by Kissinger’s method. E a decreases slightly from 2.56 eV for Ge2Sb2Te5 to 2.24 eV for Ge1.1Sb2Te5Sn0.9. The distinct change in extinction coefficient (k) of Ge2Sb2Te5 and Sn-doped amorphous films is found in the visible region. A large increase in optical contrast (C) is observed in the Sn-doped phase change materials. The phase change transition is studied using impedance measurements as a function of temperature. Impedance measurements show the appearance of nucleation centers in samples heated at temperatures below crystallization temperature (T c) and above glass transition temperature (T g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ovshinsky SR (1968) Phys Rev Lett 21:1450

    Article  Google Scholar 

  2. Zakery A, Elliot SR (2007) Optical nonlinearities in chalcogenide glasses. Springer, Berlin, p 199

    Google Scholar 

  3. Meinders ER, Mijiritskii AV, Pieterson LV, Wuttig M (2006) Optical data storage phase-change media and recording. Springer, Heidelberg, p 172

    Google Scholar 

  4. Raoux S, Wełnic W, Ielmini D (2010) Chem Rev 110:240

    Article  CAS  Google Scholar 

  5. Bernede JC (1992) Mater Chem Phys 32:189

    Article  CAS  Google Scholar 

  6. Storey T, Hunt KK, Graziano M, Li B, Bumgarner A, Rodgers J, Burcin L (2005) IEEE non-volatile memory technology symposium, pp 97–104

  7. Youm MS, Kim YT, Sung MY (2008) Phys Status Solidi A 205:1636

    Article  CAS  Google Scholar 

  8. Park TJ, Choi SY, Kang MJ (2007) Thin Solid Films 515:5049

    Article  CAS  Google Scholar 

  9. Kim Y, Jeong K, Cho MH, Hwang U, Jeong HS, Kim K (1920) Appl Phys Lett 90:17

    Google Scholar 

  10. Hernádez JG, Fierro PH, Chao B, Kovalenko Y, Sánchez EM, Prokhorov E (2006) Thin Solid Films 503:13

    Article  Google Scholar 

  11. Liu B, Song Z, Zhang T, Xia J, Feng S, Chen B (2005) Thin Solid Films 478:49

    Article  CAS  Google Scholar 

  12. Wang K, Wamwangi D, Ziegler S, Steimer C, Wuttig M (2004) J Appl Phys 96:5557

    Article  CAS  Google Scholar 

  13. Wang K, Wamwangi D, Ziegler S, Steimer C, Kang MJ, Choi SY, Wuttig M (2004) Phys Status Solidi A 201:3087

    Article  CAS  Google Scholar 

  14. Kissinger HE (1959) Anal Chem 29:1702

    Article  Google Scholar 

  15. Yamada N, Ohno E, Nishiuchi K, Akahira N (1991) J Appl Phys 69:2849

    Article  CAS  Google Scholar 

  16. Lankhorst MHR (2002) J Non-Cryst Solids 297:210

    Article  CAS  Google Scholar 

  17. Okuda M, Naito H, Matsushita T (1992) Jpn J Appl Phys 31:466

    Article  CAS  Google Scholar 

  18. Lide DR (2006) Handbook of chemistry and physics, 87th edn. Chemical Rubber, Boca Raton

    Google Scholar 

  19. Zhou J, Sun Z, Xu L, Ahuja R (2008) Solid State Commun 148:113

    Article  CAS  Google Scholar 

  20. Lee CM, Chin TS, Huang YY, Tung IC, Jeng TR, Chiang DY, Huang DR (1999) Jpn J Appl Phys 38:6369

    Article  CAS  Google Scholar 

  21. Luo M, Wuttig M (2004) Adv Mater 16:439

    Article  CAS  Google Scholar 

  22. Bonanost N, Lilley E (1981) J Phys Chem Solids 32:943

    Article  Google Scholar 

  23. Macdonald JR (1977) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  24. Matsunaga T, Yamada N (2002) Jpn J Appl Phys Part 1 41:1674

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to University Grants Commission (UGC), New Delhi for providing financial assistance to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, G., Kaura, A., Mukul, M. et al. Electrical, optical, and thermal properties of Sn-doped phase change material Ge2Sb2Te5 . J Mater Sci 48, 299–303 (2013). https://doi.org/10.1007/s10853-012-6745-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6745-z

Keywords

Navigation