Skip to main content

Advertisement

Log in

Crystalline phase formation, microstructure and mechanical properties of a lithium disilicate glass–ceramic

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, crystalline phase formation, microstructure and mechanical properties of a lithium disilicate (LS2, Li2Si2O5) glass–ceramic in the SiO2–Li2O–Al2O3–P2O5 system were investigated. A four-stage heat treatment process was used for crystallization of the glass. The effects of holding time and temperature at the final stage on the crystalline morphology of the glass–ceramic were studied. The experimental results revealed the two crystallization peaks at 672 and 839 °C. At a temperature lower than 770 °C and holding time of 20 min, the lithium metasilicate (Li2SiO3) phase dominates. On the other hand, when the glass was heated to a higher temperature or held for a longer time, the LS2 phase dominates and some other minor phases such as cristobalite and lithium phosphate emerge. Scanning electron microscopy and energy dispersive spectrometry revealed a large number of nanosized ZrO2 particles when the crystallization temperature was above 790 °C. Vickers hardness of the LS2 glass–ceramic was about 8.1–8.4 GPa and flexural strength was in the range of 282–307 MPa. Crack deflection was observed along the LS2 cluster boundaries. The crystallization sequence was proposed to explain the observed microstructure and phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. James PF (1995) J Non-Cryst Solids 181(1–2):1–15

    Article  CAS  Google Scholar 

  2. Hench LL, Day DE, Höland W, Rheinberger VM (2010) Int J Appl Glass Sci 1(1):104–117

    Article  CAS  Google Scholar 

  3. Höland W, Rheinberger V, Apel E, van’t Hoen C (2007) J Eur Ceram Soc 27(2):1521–1526

    Article  Google Scholar 

  4. Wen G, Zheng X, Song L (2007) Acta Mater 55(10):3583–3591

    Article  CAS  Google Scholar 

  5. Zheng X, Wen G, Song L, Huang XX (2008) Acta Mater 56(3):549–558

    Article  CAS  Google Scholar 

  6. Höland W, Apel E, van’t Hoen C, Rheinberger V (2006) J Non-Cryst Solids 352(38–39):4041–4050

    Article  Google Scholar 

  7. Iqbal Y, Lee WE, Holland D, James PF (1999) J Mater Sci 34(18):4399–4411. doi:10.1023/A:1004668701163

    Article  CAS  Google Scholar 

  8. von Clausbruch SC, Schweiger M, Höland W, Rheinberger V (2000) J Non-Cryst Solids 263–264:388–394

    Article  Google Scholar 

  9. Höland W, Schweiger M, Watzke R, Peschke A, Kappert H (2008) Expert Rev Med Devices 5(6):729–745

    Article  Google Scholar 

  10. James PF (1985) J Non-Cryst Solids 73(1–3):517–540

    Article  CAS  Google Scholar 

  11. Marotta A, Buri A, Branda F (1981) J Mater Sci 16(2):341–344. doi:10.1007/BF00738622

    Article  CAS  Google Scholar 

  12. James PF, Iqbal Y, Jais US, Jordery S, Lee WE (1997) J Non-Cryst Solids 219:17–29

    Article  CAS  Google Scholar 

  13. Harper H, James PF, McMillan PW (1970) Discuss Faraday Soc 50:206–213

    Article  Google Scholar 

  14. Buchner S, Soares P, Pereira AS, Ferreira EB, Balzaretti NM (2010) J Non-Cryst Solids 356(52–54):3004–3008

    Article  CAS  Google Scholar 

  15. Partridge G, McMillan PW (1963) Glass Technol 4(6):173–182

    CAS  Google Scholar 

  16. McMillan PW, Partridge G (1963) GB Patent 924996

  17. Hammetter WF, Loehman RE (1987) J Am Ceram Soc 70(8):577–582

    Article  CAS  Google Scholar 

  18. Bischoff C, Eckert H, Apel E, Rheinberger VM, Höland W (2011) Phys Chem Chem Phys 13(10):4540–4551

    Article  CAS  Google Scholar 

  19. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64(9):533–538

    Article  CAS  Google Scholar 

  20. Xu B, Zhang HC, Xu LH, Zhang W, Cheng K (2005) Rare Met Mater Eng 34:355–358

    CAS  Google Scholar 

  21. Apel E, van’t Hoen C, Rheinberger V, Höland W (2007) J Eur Ceram Soc 27(2–3):1571–1577

    Article  CAS  Google Scholar 

  22. Barker MF, Wang T-H, James PF (1988) Phys Chem Glasses 29(6):240–248

    CAS  Google Scholar 

  23. Headley TJ, Loehman RE (1984) J Am Ceram Soc 67:620–625

    Article  CAS  Google Scholar 

  24. Höland W, Rheinberger V, Schweiger M (2003) Philos Trans R Soc Lond A 361:575–589

    Article  Google Scholar 

  25. O’Donnell MD, Hill RG, Karpukhina N, Law RV (2011) Dent Mater 27:990–996

    Article  Google Scholar 

  26. Sawai I (1961) Glass Technol 2(6):243–247

    CAS  Google Scholar 

Download references

Acknowledgements

S. F. Huang would like to acknowledge the China Scholarship Council (CSC) for providing a Doctoral Scholarship. The authors are grateful to Ms. Stella Raynova, The University of Waikato, for providing technical assistance on the DTA work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Zhang, B., Huang, Z. et al. Crystalline phase formation, microstructure and mechanical properties of a lithium disilicate glass–ceramic. J Mater Sci 48, 251–257 (2013). https://doi.org/10.1007/s10853-012-6738-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6738-y

Keywords

Navigation