Skip to main content
Log in

A study of the microstructure, phase composition, and mechanical properties of extruded Mg–9Er–6Y–xZn–0.6Zr magnesium alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure, phase composition, and mechanical properties of Mg–9Er–6Y–xZn–0.6Zr (x = 1, 3, 5 wt%; nominal chemical composition) series alloys were investigated through optical microscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, transmission electron microscopy, and tensile tests. Numerous granular Mg24(Er, Y, Zn)5 phases were distributed in a discontinuous network mainly along the grain boundaries in the alloy with 1 wt% Zn. With increasing Zn content, the Mg24(Er, Y, Zn)5 phases in the alloys gradually disappeared, the amount of block Mg12Zn(Y, Er) phases increased, and the block size became larger. In addition, a few lamellar phases grew parallel with one another from the grain boundaries to the grain interior in the alloys. The crystallographic structures of the Mg12Zn(Y, Er) and Mg24(Er, Y, Zn)5 phases were confirmed as 18R-type long-period stacking ordered structures and body-centered cubic structures, respectively. The Mg12Zn(Y, Er) phases with long-period stacking ordered structures increased the strength and toughness of the alloys more than the Mg24(Er, Y, Zn)5 phases with body-centered cubic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boehlert CJ (2007) J Mater Sci 42:3675. doi:10.1007/s10853-006-1352-5

    Article  CAS  Google Scholar 

  2. Liu K, Zhang J, Sun W, Qiu X, Huayi L, Dingxiang Tang LL, Rokhlin FM, Elkin JM (2009) J Mater Sci 44:74. doi:10.1007/s10853-008-3122-z

    Article  Google Scholar 

  3. Ning ZL, Wang GJ, Cao FY, Sun JF, Du JF (2009) J Mater Sci 44:4264. doi:10.1007/s10853-009-3620-7

    Article  CAS  Google Scholar 

  4. On˜orbe E, Garce′s G, Pe′rez P, Adeva P (2012) J Mater Sci 47:1085. doi:10.1007/s10853-011-5899-4

    Article  Google Scholar 

  5. Singh A, Osawa Y, Somekawa H, Mukai T (2011) Scr Mater 64:661

    Article  CAS  Google Scholar 

  6. Ayman E, Junko U, Katsuyoshi K (2011) Acta Mater 59:273

    Article  CAS  Google Scholar 

  7. Li RG, Nie JF, Huang GJ, Xin YC, Liu Q (2011) Scr Mater 64:950

    Article  CAS  Google Scholar 

  8. Kawamura Y, Hayashi K, Inoue A, Masumoto T (2001) Mater Trans JIM 42:1172

    Article  CAS  Google Scholar 

  9. Abe E, Kawamura Y, Hayashi K, Inoue A (2002) Acta Mater 50:3845

    Article  CAS  Google Scholar 

  10. Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M (2005) Mater Sci Eng A 393:269

    Article  Google Scholar 

  11. Kawamura Y, Yamasaki M (2007) Mater Trans 48:2986

    Article  CAS  Google Scholar 

  12. Itoi T, Seimiya T, Kawamura Y, Hirohashi M (2004) Scr Mater 51:107

    Article  CAS  Google Scholar 

  13. Yoshimoto S, Yamasaki M, Kawamura Y (2006) Mater Trans 47:959

    Article  CAS  Google Scholar 

  14. Yamasaki M, Anan T, Yoshimoto S, Kawamura Y (2005) Scr Mater 53:799

    Article  CAS  Google Scholar 

  15. Yang Z, Li JP, Guo YC, Liu T, Xia F, Zeng ZW, Liang MX (2007) Mater Sci Eng A 454–455:274

    Google Scholar 

  16. Homma T, Kunito N, Kamado S (2009) Scr Mater 61:644

    Article  CAS  Google Scholar 

  17. LI J, Du W, Li S, Wang Z (2009) Rare Met 28:297

    Article  CAS  Google Scholar 

  18. LI J, Du W, Li S, Wang Z (2009) Rare Met 28:261

    Article  Google Scholar 

  19. Zhang J, Zhang X, Li W, Pan F, Guo Z (2010) Scr Mater 63:367

    Article  CAS  Google Scholar 

  20. Zhang J, Li W, Zhang B, Dou Y (2011) Mater Sci Eng A 528:4740

    Article  Google Scholar 

  21. Gao Y, Wang Q, Jinhai Gu, Zhao Y, Tong Y, Yin D (2009) J Alloys Compd 477:374

    Article  CAS  Google Scholar 

  22. Liu K, Zhang J, Guihua S, Dingxiang T, Rokhlin LL, Elkin FM, Meng J (2009) J Alloys Compd 481:811

    Article  CAS  Google Scholar 

  23. Saccone A, Delfino S, Maccio D, Ferro R (1992) Metall Mater Trans A 23:1005

    Article  Google Scholar 

  24. Klyamkin SN, Kandalova NV, Verbetskii VN, Semenenko KN (1991) Russ J Inorg Chem 36:122

    Google Scholar 

  25. Okamoto H (2000) Desk handbook: phase diagrams for binary alloys. ASM International, Newbury

    Google Scholar 

  26. Luo ZP, Zhang SQ (2000) J Mater Sci Lett 19:813

    Article  CAS  Google Scholar 

  27. Hagihara K, Yokotani N, Umakoshi Y (2010) Intermetallics 18:267

    Article  CAS  Google Scholar 

  28. Shao XH, Yang ZQ, Ma XL (2010) Acta Mater 58:4760

    Article  CAS  Google Scholar 

  29. Zhang S, Yuan GY, Lu C, Ding WJ (2011) J Alloys Compd 509:3515

    Article  CAS  Google Scholar 

  30. Hagihara K, Kinoshita A, Sugino Y, Yamasaki M, Kawamura Y, Yasuda HY, Umakoshi Y (2010) Acta Mater 58:6282

    Article  CAS  Google Scholar 

  31. Chino Y, Mabuchi M, Hagiwara S, Iwasaki H, Yamamoto A, Tsubakino H (2004) Scr Mater 51:711

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Program for New Century Excellent Talents in University (Grant No. NCET-11-0554) and the National Key Technology R&D Program (Project No. 2011BAE22B04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingfeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Song, P., Zhou, X. et al. A study of the microstructure, phase composition, and mechanical properties of extruded Mg–9Er–6Y–xZn–0.6Zr magnesium alloys. J Mater Sci 47, 6716–6723 (2012). https://doi.org/10.1007/s10853-012-6614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6614-9

Keywords

Navigation