Skip to main content
Log in

Interactions between Ni-44Ti-5Al-2Nb-Mo alloy and oxide ceramics during directional solidification process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Interactions between Ni-44Ti-5Al-2Nb-Mo (at.%) alloy and oxide ceramics during the directional solidification (DS) process were studied. The experiments were performed using novel Y2O3-coated Al2O3 (Y2O3/Al2O3) crucibles and conventional Al2O3 crucibles with a withdrawal rate of 1 × 10−4 m s−1 at 1550, 1650, and 1750 °C, respectively. The results indicated that the Al2O3 reacted with the NiTi-Al alloy strongly, leading to the formation of the TiO and (Ti,Al)4Ni2O inclusions. The extent of the reaction increased with increasing heating temperature at a constant withdrawal rate. The oxygen increase in directionally solidified ingot using the Al2O3 crucible was up to 1.366 wt% at 1750 °C. With the same DS parameters using the Y2O3/Al2O3 crucible, no chemical reaction occurred between the Y2O3 and the alloy, suggesting that the Y2O3 layer exhibited an effective barrier capability to avoid the reaction between the Al2O3 and NiTi-Al alloy. Although the alloy ingot obtained at 1750 °C contained a small amount of Y2O3 particles, its maximum oxygen increase was only 0.046 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu HB, Meng LJ, Xu J, Li Y, Zhao XQ (2007) Intermetallics 15:778

    Article  CAS  Google Scholar 

  2. Jung J, Ghosh G, Olson GB (2003) Acta Mater 51:6341

    Article  CAS  Google Scholar 

  3. Sang YR (2010) Master Thesis, Beihang University

  4. Jiang WH, Sun XF, Guan HR, Hu ZQ (2001) J Mater Sci 36:859. doi:10.1023/A:1004830629974

    Article  CAS  Google Scholar 

  5. Bei H, Pharr GM, George EP (2004) J Mater Sci 39:3975. doi:10.1023/B:JMSC.0000031479.32138.84

    Article  CAS  Google Scholar 

  6. Zhao XB, Liu L, Yu ZH, Zhang WG, Zhang J, Fu HZ (2010) J Mater Sci 45:6101. doi:10.1007/s10853-010-4696-9

    Article  CAS  Google Scholar 

  7. Tang JJ, Xue X (2009) J Mater Sci 44:745. doi:10.1007/s10853-008-3157-1

    Article  CAS  Google Scholar 

  8. Tawancy HM, Abbas NM, Al-mana AI, Rhys-jones TN (1994) J Mater Sci 39:2445. doi:10.1007/BF00363439

    Article  Google Scholar 

  9. Johnson DR, Chihara K, Inui H, Yamaguchi M (1998) Acta Mater 46:6529

    Article  CAS  Google Scholar 

  10. Kim MC, Oh MH, Lee JH, Inui H, Yamaguchi M, Wee DM (1997) Mater Sci Eng A 239–240:570

    Google Scholar 

  11. Lapin J, Ondru′sˇ L, Nazmy M (2002) Intermetallics 10:1019

    Article  CAS  Google Scholar 

  12. Wu MB, Guo XP, Wu XJ (2007) Rare Met Cem Car 35:9

    Google Scholar 

  13. Yang S, Liu WJ, Jia J (2001) J Mater Sci 36:5351. doi:10.1023/A:1012467817033

    Article  CAS  Google Scholar 

  14. Gomes F, Puga H, Barbosa J, Ribeiro CS (2011) J Mater Sci 46:4922. doi:10.1007/s10853-011-5405-z

    Article  CAS  Google Scholar 

  15. Lapin J, Gabalcova Z, Pelachova T (2011) Intermetallics 19:396

    Article  CAS  Google Scholar 

  16. Hecht U, Witusiewicz V, Drevermann A, Zollinger J (2008) Intermetallics 16:969

    Article  CAS  Google Scholar 

  17. Froes FH, Suryanarayana C, Eliezer D (1992) J Mater Sci 27:5113. doi:10.1007/BF02403806

    Article  CAS  Google Scholar 

  18. Jia Q, Cui YY, Yang R (2006) J Mater Sci 41:3045. doi:10.1007/s10853-006-6785-3

    Article  CAS  Google Scholar 

  19. Kuang JP, Harding RA, Campbell J (2001) Int J Cast Metals Res 13:277

    CAS  Google Scholar 

  20. Tang XX, Zhang HR, Gao M, Zhang H (2009) Chin Patent 200910079975.7

  21. Zhang HR, Gao M, Tang XX, Zhang H (2010) Acta Metall Sin 46:890

    Article  CAS  Google Scholar 

  22. Barin I (1997) Thermochemical data of pure substances, 3rd edn. Wiley-VCH, Germany

    Google Scholar 

  23. Tressler RE, Moore TL, Crane RL (1973) J Mater Sci 8:151. doi:10.1007/BF00550662

    Article  CAS  Google Scholar 

  24. Sung SY, Kim YJ (2006) Intermetallics 14:1163

    Article  CAS  Google Scholar 

  25. Hiroyuki T, Takeshita HT, Tetsu K, Nobuhiko T, Nobuhiro K (2002) J Alloys Compd 330–332:517

    Google Scholar 

  26. Nevitt MV (1960) Trans Metall Soc 218:327

    CAS  Google Scholar 

  27. Frenzel J, George EP, Dlouhy A, Somsen Ch, Wagner MF-X, Eggeler G (2010) Acta Mater 58:3444

    Article  CAS  Google Scholar 

  28. Barbosa J, Ribeiro CS, Monteiro AC (2007) Intermetallics 15:945

    Article  CAS  Google Scholar 

  29. Cui RJ, Gao M, Zhang H, Gong SK (2010) J Mater Process Technol 9:1190

    Google Scholar 

  30. Gao M, Cui RJ, Ma LM, Zhang HR, Tang XX, Zhang H (2011) J Mater Process Technol 211:2004

    Article  CAS  Google Scholar 

  31. Wu Y, Hwang SK (2002) Acta Mater 50:1479

    Article  CAS  Google Scholar 

  32. Helferich RL, Zanis CA (1973) Technical Repot, AD-754092, USA

  33. Saari H, Beddoes J, Seo DY, Zhao L (2005) Intermetallics 13:937

    Article  CAS  Google Scholar 

  34. Tetsui T, Kobayashi T, Kishimoto A, Harada H (2012) Intermetallics 20:16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. L.M. Ma of Beihang University for his valuable help and the Journal’s editors and reviewers for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H.R., Tang, X.X., Zhou, L. et al. Interactions between Ni-44Ti-5Al-2Nb-Mo alloy and oxide ceramics during directional solidification process. J Mater Sci 47, 6451–6458 (2012). https://doi.org/10.1007/s10853-012-6577-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6577-x

Keywords

Navigation