Skip to main content

Advertisement

Log in

Creep and fracture behavior of as-cast Mg–11Y–5Gd–2Zn–0.5Zr (wt%)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile-creep and creep–fracture behavior of as-cast Mg–11Y–5Gd–2Zn–0.5Zr (wt%) (WGZ1152) was investigated at temperatures between 523 and 598 K (0.58–0.66T m) and stresses between 30 and 140 MPa. The creep stress exponent was close to five, suggesting that dislocation creep was the dominant creep mechanism. The activation energy for creep (233 ± 18 kJ/mol) was higher than that for self-diffusion in magnesium, and was believed to be associated with cross-slip, which was the dominant thermally-aided creep mechanism. This was consistent with the surface observations, which suggested non-basal slip and cross-slip were active at 573 K. The minimum creep rate and fracture time values fit the original and modified Monkman–Grant models. In situ creep experiments highlighted the intergranular cracking evolution. The creep properties and behavior were compared with those for other high-temperature creep-resistant Mg alloys such as WE54-T6 and HZ32-T5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References:

  1. Mordike BL, Kainer KU (2000) Magnesium alloys and their applications. Wiley, New York, p 816

    Google Scholar 

  2. Luo AA (2004) Int Mater Rev 49:13

    Article  CAS  Google Scholar 

  3. Mordike BL (2002) Mat Sci Eng A 324:103

    Article  Google Scholar 

  4. Pekguleryuz M, Celikin M (2010) Int Mater Rev 55:197

    Article  CAS  Google Scholar 

  5. Mordike BL, Ebert T (2001) Mat Sci Eng A 302:37

    Article  Google Scholar 

  6. Luo A, Pekguleryuz MO (1994) J Mater Sci 29:5259. doi:10.1007/BF01171534

    Article  CAS  Google Scholar 

  7. Aghion E, Bronfin B, Von Buch F, Schumann S, Friedrich H (2003) JOM 55:A30

    Article  Google Scholar 

  8. Yan JL, Sun YS, Xue F, Bai J, Xue S, Tao WJ (2008) J Mater Sci 43:6952. doi:10.1007/s10853-008-2968-4

    Article  CAS  Google Scholar 

  9. Janik V, Yin DD, Wang QD, He SM, Chen CJ, Chen Z, Boehlert CJ (2011) Mater Sci Eng A 528:3105

    Article  Google Scholar 

  10. Mordike BL, Stulíková I, Smola B (2005) Metall Mater Trans A 36:1729

    Article  Google Scholar 

  11. Gao Y, Wang QD, Gu JH, Zhao Y, Tong Y, Yin DD (2009) J Alloys Compd 477:374

    Article  CAS  Google Scholar 

  12. Yin DD, Wang QD, Gao Y, Chen CJ, Zheng J (2011) J Alloys Compd 509:1696

    Article  CAS  Google Scholar 

  13. Okamoto K, Sasaki M, Takahashi N, Wang QD, Gao Y, Yin DD, Chen CJ (2011) Magnesium Technology 2011. Wiley, Hoboken

    Google Scholar 

  14. Chen CJ, Wang QD, Yin DD (2009) J Alloys Compd 487:560

    Article  CAS  Google Scholar 

  15. Boehlert CJ, Cowen CJ, Tamirisakandala S, Mceldowney DJ, Miracle DB (2006) Scripta Mater 55:465

    Article  CAS  Google Scholar 

  16. Quast JP, Boehlert CJ (2007) Metall Mater Trans A 38:529

    Article  Google Scholar 

  17. Zhu YM, Morton AJ, Nie JF (2010) Acta Mater 58:2936

    Article  CAS  Google Scholar 

  18. Miannay DP (2001) Time-dependent fracture mechanics. Springer, New York, p 313

    Book  Google Scholar 

  19. Ashby MF, Dyson BF (1984) Creep damage mechanics and micromechanisms. In: Valluri RS (ed) Advances in fracture research, vol 1. Pergamon Press, Oxford and New York, p 3

    Google Scholar 

  20. Monkman FC, Grant NJ (1956) Proc ASTM 56:593

    Google Scholar 

  21. Sundararajan G (1989) Mater Sci Eng A 112:205

    Article  Google Scholar 

  22. Dobes F, Milicka K (1976) Met Sci 10:382

    CAS  Google Scholar 

  23. Dunand DC, Han BQ, Jansen AM (1999) Metall Mater Trans A 30:829

    Google Scholar 

  24. Hnilica F, Jan V, Smola KB, Stul Kov I, Ocen Sek V (2008) Mater Sci Eng A 489:93

    Article  Google Scholar 

  25. Povolo F (1985) J Mater Sci 20:2005. doi:10.1007/BF01112283

    Article  Google Scholar 

  26. Nie JF, Muddle B (2000) Acta Mater 48:1691

    Article  CAS  Google Scholar 

  27. He SM, Zeng XQ, Peng LM, Gao X, Nie JF, Ding WJ (2006) J Alloys Compd 421:309

    Article  CAS  Google Scholar 

  28. Vagarali SS, Langdon TG (1981) Acta Mater 29:1969

    Article  CAS  Google Scholar 

  29. Vagarali SS, Langdon TG (1982) Acta Mater 30:1157

    Article  CAS  Google Scholar 

  30. Dieter GE (1986) Mechanical metallurgy. McGraw-Hill, New York, p 751

    Google Scholar 

  31. Ishikawa K, Watanabe H, Mukai T (2005) J Mater Sci 40:1577. doi:10.1007/s10853-005-0656-1

    Article  CAS  Google Scholar 

  32. Kassner ME, Perez-Prado MT (2000) Prog Mater Sci 45:1

    Article  CAS  Google Scholar 

  33. Milika K, Adek J, Ry P (1970) Acta Mater 18:1071

    Article  Google Scholar 

  34. Shi L, Northwood DO (1994) Acta Mater 42:871

    Article  CAS  Google Scholar 

  35. Somekawa H, Hirai K, Watanabe H, Takigawa Y, Higashi K (2005) Mater Sci Eng A 407:53

    Article  Google Scholar 

  36. Miller WK (1991) Metall Mater Trans A 22:873

    Article  Google Scholar 

  37. Regev M, Aghion E, Berger S, Bamberger M, Rosen A (1998) Mater Sci Eng A 257:349

    Article  Google Scholar 

  38. Regev M, Aghion E, Rosen A, Bamberger M (1998) Mater Sci Eng A 252:6

    Article  Google Scholar 

  39. Zhao P, Wang Q, Zhai C, Zhu Y (2007) Mater Sci Eng A 444:318

    Article  Google Scholar 

  40. Boehlert CJ, Knittel K (2006) Mater Sci Eng A 417:315

    Article  Google Scholar 

  41. Boehlert CJ (2007) J Mater Sci 42:3675. doi:10.1007/s10853-006-1352-5

    Article  CAS  Google Scholar 

  42. Suzuki M, Sato H, Maruyama K, Oikawa H (1998) Mater Sci Eng A 252:248

    Article  Google Scholar 

  43. Suzuki M, Sato H, Maruyama K, Oikawa H (2001) Mater Sci Eng A 319–321:751

    Google Scholar 

  44. Anyanwu IA, Kamado S, Kojima Y (2001) Mater Trans 42:1212

    Article  CAS  Google Scholar 

  45. Wang JG, Hsiung LM, Nieh TG, Mabuchi M (2001) Mater Sci Eng A 315:81

    Article  Google Scholar 

  46. Morgan JE, Mordike BL (1981) Metall Mater Trans A 12:1581

    Article  CAS  Google Scholar 

  47. Wang QD, Li DQ, Blandin JJ, Suery M (2009) Mater Sci Eng A 516:189

    Article  Google Scholar 

  48. Kassner ME, Hayes TA (2003) Int J Plast 19:1715

    Article  Google Scholar 

  49. Sklenicka V (1997) Mater Sci Eng A 24:30

    Google Scholar 

  50. Chen IW (1983) Metall Mater Trans A 14:2289

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51074106 and No. 50971089), the Key Hi-Tech Research and Development Program of China (2009AA033501), the National Key Technology R & D Program of China (2011BAE22B01-5), and the International Cooperation Fund of Shanghai Science and Technology Committee, Shanghai/Rhone-Alpes Science and Technology cooperation fund (No. 06SR07104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. D. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, D.D., Wang, Q.D., Boehlert, C.J. et al. Creep and fracture behavior of as-cast Mg–11Y–5Gd–2Zn–0.5Zr (wt%). J Mater Sci 47, 6263–6275 (2012). https://doi.org/10.1007/s10853-012-6546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6546-4

Keywords

Navigation