Skip to main content
Log in

Studies on lithium alumino phosphate glasses doped with selenium ions for hard electrolytes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glass samples of the system (100 − x) (0.5 Li2O–0.2Al2O3–0.3P2O5) + xSeO2 (x is ranging from 0 to 12 mol%, labeled as LAPS x ) were prepared using the melt quenching technique. FTIR spectral studies indicate that selenium ions mostly occupy network modifying sites due to isolated selenite (SeO3 2−) groups up to 6 mol% of SeO2 (LAPS6) in the LAPS glass network. This has a tremendous effect on the electrical properties. Glass forming ability parameter (K gl) and the glass transition temperature (T g) of LAPS samples were characterized by DTA traces. Electrical measurements were carried out as a function of frequency and temperature over the frequency range of 10 Hz to 106 Hz and a temperature range of 303–423 K. The electric modulus formalism was applied to study the relaxation behavior using the impedance data for all the samples at 303 K and also for analyzing the relaxation behavior of the highest conducting sample (6 mol% of SeO2) at different temperatures. An attempt has been made to relate the measured properties to the structural modifications due to the modifying effect of isolated selenite (SeO3 2−) groups in the glass network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abrahams I, Hadzifejzovic E (2000) Solid State Ion 134:249

    Article  CAS  Google Scholar 

  2. Jun Du, Beth J, Michael L (2005) Mater Lett 59:2821

    Article  Google Scholar 

  3. Gao C, Drummond H (1999) J Am Ceram Soc 82(3):561

    Article  CAS  Google Scholar 

  4. Scrosati B (2000) Electrochim Acta 45:2461

    Article  CAS  Google Scholar 

  5. Ritchie AG (2004) J Power Sources 136:285

    Article  CAS  Google Scholar 

  6. Baskaran GS, Fllower G, Veeraiah N (2007) J Alloys Compd 431:303

    Article  CAS  Google Scholar 

  7. Kityk IV, Ebothe J, Qingsheng L, Shaoyong S, Fang J (2006) Nanotechnology 17:1871

    Article  CAS  Google Scholar 

  8. Muller D, Ladwig G, Hallas E (1983) Phys Chem Glasses 24:37

    Google Scholar 

  9. Lee CH, Sohn HJ, Kim MG (2005) Solid State Ion 176:1237

    Article  CAS  Google Scholar 

  10. Lee CH, Joo KH, Kim JH, Woo SG, Kang T, Park YJ, Oh Y (2002) Solid State Ion 149:59

    Article  CAS  Google Scholar 

  11. Karabulut M, Metwalli E, Brow RK (2001) J Non Cryst Solids 283:211

    Article  CAS  Google Scholar 

  12. Gedam RS, Deshpande VK (2006) Solid State Ion 177:2589

    Article  CAS  Google Scholar 

  13. Balaji Rao R, Gerhardt RA (2008) Mater Chem Phys 112(1):186

    Article  CAS  Google Scholar 

  14. Foltyh MF, Wasiucionek M, Nowinski JL (2005) Solid State Ion 176:2137

    Article  Google Scholar 

  15. Varshneya AK (1994) Fundamentals of inorganic glasses. Academic Press, Inc., San Diego, p 96

    Google Scholar 

  16. Hruby A (1972) Czech J Phys 22:1187

    Article  CAS  Google Scholar 

  17. Moreau F, Duran A, Munoz F (2009) J Eur Ceram Soc 29:1895

    Article  CAS  Google Scholar 

  18. Elisa M, Cristina Vasiliu I, Grigoras CEA, Niciu H, Niciu D, Meghea A, Iftime N, Giurginca M, Trodahl HJ, Dalley M (2006) Opt Mater 28:621

    Article  CAS  Google Scholar 

  19. Little Flower G, Srinivasa Reddy M, Baskaran GS, Veeraiah N (2007) Opt Mater 30:357

    Article  Google Scholar 

  20. Yanko B, Dimitriev S, Yordanov I, Luben I (1995) J Non Cryst Solids 192:179

    Article  Google Scholar 

  21. Maia LF, Rodrigues ACM (2004) Solid State Ion 168:87

    Article  CAS  Google Scholar 

  22. Kluvanek P, Klement R, Karacona M (2007) J Non Cryst Solids 353:2004

    Article  CAS  Google Scholar 

  23. Mogus-Milankovi A, Santi AS, Karabulut M, Day DE (2007) J Non Cryst Solids 330:128

    Article  Google Scholar 

  24. Muthupari S, Raghavan SL, Rao KJ (1996) J Phys Chem 100:4243

    Article  CAS  Google Scholar 

  25. Rolling B, Ingram MD (2002) J Non Cryst Solids 265:113

    Article  Google Scholar 

  26. Alexander MN, Onarto PIK, Struck CW, Rozen JR, Tasker GW (1986) J Non Cryst Solids 79:137

    Article  CAS  Google Scholar 

  27. Nobre MAL, Lafendri S (2001) J Phys Chem Solids 62:1999

    Article  CAS  Google Scholar 

  28. Verhoef AH, Denhartog HW (1994) Solid State Ion 68:305

    Article  CAS  Google Scholar 

  29. Elliot SR, Owens AP (1994) Solid State Ion 70:27

    Article  Google Scholar 

  30. Almond DP, West AR (1983) Solid State Ion 11:57

    Article  CAS  Google Scholar 

  31. Gerhardt RA (1994) J Phys Chem Solids 55:1491

    Article  CAS  Google Scholar 

  32. Moynihan CT, Boesch LP, laberge NL (1973) Phys Chem Glasses 14:122

    CAS  Google Scholar 

  33. Ghosh A, Pan A (2000) Phys Rev Lett 84:2188

    Article  CAS  Google Scholar 

  34. Schroder TB, Dyre JC (2000) Phys Rev Lett 84:310

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Balaji Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koti Reddy, C.V., Balaji Rao, R., Chandra Mouli, K. et al. Studies on lithium alumino phosphate glasses doped with selenium ions for hard electrolytes. J Mater Sci 47, 6254–6262 (2012). https://doi.org/10.1007/s10853-012-6545-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6545-5

Keywords

Navigation