Skip to main content
Log in

An analytic approach to the effect of anisotropic growth on diffusion-controlled transformation kinetics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of the anisotropic growth and soft-impingement (SI) on the kinetics of diffusion-controlled (DC) transformation are investigated. An analytic approach to describe the kinetics of DC transformation subjected to anisotropic effect is presented, assuming pre-existing nuclei, one-dimensional growth, and linear approximation of concentration gradient. The anisotropic effect and SI effect are evaluated from the varying Avrami exponent. SI effect only occurs at the last stage of transformation, although anisotropic effect broadens its range. This approach is applied to predict the isothermal thickening of ferrite layer in Fe–0.17 wt% C alloy at 973 K and isothermal transformation of austenite to allotriomorphic ferrite in 0.37C–1.45Mn–0.11V microalloyed steel at 913 K; good agreements are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Since the numerical solution of differential equation 19 is sensitive to the smaller L, it is inconvenient to solve Eq. 22 numerically, let alone the exact solutions of Eqs. 23a and 25a. Therefore, the present study is only focused on the results and discussions of Eqs. 23b and 25b involving both the anisotropic effect and the SI effect, and of Eqs. 23c and 25c involving only the anisotropic effect. It will be shown that the approximate approach is more effective for many DC transformations.

References

  1. Zener C (1949) J Appl Phys 20:950

    Article  CAS  Google Scholar 

  2. Christian JW (2002) The theory of transformations in metals and alloys. Pergamon Press, Oxford

    Google Scholar 

  3. Bruna P, Crespo D, González-Cinca R (2006) J Appl Phys 100:054907

    Article  Google Scholar 

  4. Wang HF, Liu F, Zhang T, Yang GC, Zhou YH (2009) Acta Mater 57:3072

    Article  CAS  Google Scholar 

  5. Yu G, Lai YKL, Zhang W (1997) J Appl Phys 82:4270

    Article  CAS  Google Scholar 

  6. Pradell T, Crespo D, Clavaguera N, Clavaguera-Mora MT (1998) J Phys Condens Matter 10:3833

    Article  CAS  Google Scholar 

  7. García de Andrés C, Capdevila C, Caballero FG, Bhadeshia HKDH (1998) Scr Mater 39:853

    Article  Google Scholar 

  8. Clavaguera-Mora MT, Clavaguera N, Crespo D, Pradell T (2002) Prog Mater Sci 47:559

    Article  CAS  Google Scholar 

  9. Offerman SE, van Dijk NH, Lauridsen EM, Margulies L, Grigull S, Poulsen HF, van der Zwaag S (2004) Acta Mater 52:4757

    Article  CAS  Google Scholar 

  10. Fan K, Liu F, Liu XN, Zhang YX, Yang GC, Zhou YH (2008) Acta Mater 56:4309

    Article  CAS  Google Scholar 

  11. Tomellini M (2008) J Mater Sci 43:7102. doi:10.1007/s10853-008-3024-0

    Article  CAS  Google Scholar 

  12. Tomellini M (2011) Comput Mater Sci 50:2371

    Article  CAS  Google Scholar 

  13. Chen H, van der Zwaag S (2011) J Mater Sci 46:1328. doi:10.1007/s10853-010-4922-5

    Article  CAS  Google Scholar 

  14. Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Int Mater Rev 52:193

    Article  CAS  Google Scholar 

  15. Mittemeijer EJ (2010) Fundamentals of materials science: the microstructure–property relationship using metals as model systems. Springer, Heidelberg

    Google Scholar 

  16. Shepilov MP, Baik DS (1994) J Non-Cryst Solids 171:141

    Article  CAS  Google Scholar 

  17. Birnie DP III, Weinberg MC (1995) J Chem Phys 103:3742

    Article  CAS  Google Scholar 

  18. Weinberg MC, Birnie DP III (1996) J Chem Phys 105:5138

    Article  CAS  Google Scholar 

  19. Pusztai T, Gránásy L (1998) Phys Rev B 57:14110

    Article  CAS  Google Scholar 

  20. Kooi BJ (2004) Phys Rev B 70:224108

    Article  Google Scholar 

  21. Kooi BJ (2006) Phys Rev B 73:054103

    Article  Google Scholar 

  22. Liu F, Yang GC (2007) Acta Mater 55:1629

    Article  CAS  Google Scholar 

  23. Song SJ, Liu F, Jiang YH, Wang HF (2011) Acta Mater 59:3276

    Article  CAS  Google Scholar 

  24. Weinberg MC, Birnie DP III (1996) J Non-Cryst Solids 202:290

    Article  CAS  Google Scholar 

  25. Tegze G, Gránásy L, Tóth GI, Podmaniczky F, Jaatinen A, Ala-Nissila T, Pusztai T (2009) Phys Rev Lett 103:035702

    Article  CAS  Google Scholar 

  26. Pusztai T, Tegze G, Tóth GI, Környei L, Bansel G, Fan Z, Gránásy L (2008) J Phys Condens Matter 20:404205

    Article  Google Scholar 

  27. Tomellini M (2010) J Mater Sci 45:733. doi:1007/s10853-009-3992-8

    Article  CAS  Google Scholar 

  28. Tomellini M (2012) J Mater Sci 47:804. doi:10.1007/s10853-011-5858-0

    Article  CAS  Google Scholar 

  29. Vandermeer RA (1990) Acta Metall Mater 38:2461

    Article  CAS  Google Scholar 

  30. Horvay G, Cahn JW (1961) Acta Metall 9:695

    Article  CAS  Google Scholar 

  31. Ham FS (1959) Q Appl Math 17:137

    Google Scholar 

  32. Aaronson HI, Enomoto M, Lee JK (2010) Mechanisms of diffusional phase transformations in metals and alloys. CRC Press, Boca Raton

    Google Scholar 

  33. Crusius S, Höglund L, Knoop U, Inden G, Ågren J (1992) Z Metallkd 83:10

    Google Scholar 

  34. Ham FS (1958) J Phys Chem Solids 6:335

    Article  CAS  Google Scholar 

  35. Starink MJ, Zahra AM (1998) Acta Mater 46:3381

    Article  CAS  Google Scholar 

  36. Starink MJ (2004) Int Mater Rev 49:191

    Article  CAS  Google Scholar 

  37. Starink MJ (2001) J Mater Sci 36:4433. doi:10.1023/A:1017974517877

    Article  CAS  Google Scholar 

  38. Birnie DP III, Weinberg MC (1996) Physica A 223:337

    Article  Google Scholar 

  39. Aaron HB, Fainstein D, Kotler GR (1970) J Appl Phys 41:4404

    Article  Google Scholar 

  40. Ågren J (1986) Scr Metall 20:1507

    Article  Google Scholar 

  41. Onink M (1995) Dissertation, Delft University of Technology. p 122

  42. Capdevila C, Caballero FG, García de Andrés C (2001) Metall Mater Trans A 32:661

    Google Scholar 

  43. Capdevila C, Caballero FG, García de Andrés C (2001) Rev Metal (Madrid) 37:509

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Free Research Fund of State Key Laboratory of Solidification Processing (09-QZ-2008 and 24-TZ-2009), the Natural Science Foundation of China (51071127 and 51134011), the Fundamental Research Fund of Northwestern Polytechnical University (JC200801), China National Funds for Distinguished Young Scientists (51125002), and the National Basic Research Program of China (973 Program, 2011CB610403). S.J. Song is also grateful to the Ministry of Education Fund for Doctoral Students Newcomer Awards of China, and to the Doctorate Foundation of Northwestern Polytechnical University (No. CX201008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S.J., Liu, F. & Jiang, Y.H. An analytic approach to the effect of anisotropic growth on diffusion-controlled transformation kinetics. J Mater Sci 47, 5987–5995 (2012). https://doi.org/10.1007/s10853-012-6504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6504-1

Keywords

Navigation