Skip to main content
Log in

Structural changes in four different precursors with heat treatment at high temperature and resin carbon structural model

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Four precursors (mesophase pitch, condensed polynuclear aromatic resin, polyimide resin, and thermosetting phenolic resin) were heat treated at temperatures from 900 to 3000 °C. These products were characterized by X-ray diffraction, transmission electron microscopy, and helium adsorption density instruments. Heterogeneous graphitization was observed above 2200 °C in the resin carbons. Various constituents (amorphous, turbostratic, and graphitic) coexisted and transformed from being disordered to ordered with increasing treatment temperature. The molecular structures of the starting materials played important roles in the proportions of various constituents, crystallite sizes, and preferred orientation of the graphitic constituent of the different carbons during high temperature treatment. High-resolution transmission electron microscopy images showed that the structural features of Jenkins' and Shiraishi’s model all existed in three resin carbons. Based on these results, we think that their structures are not belong to Jenkins' model, also do not belong to Shiraishi's model, are a complex of above two models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fitzer E (1987) Carbon 25:163

    Article  CAS  Google Scholar 

  2. Franklin RE (1951) Pro R Soc Lond A 209:196

    Article  CAS  Google Scholar 

  3. Dumont M, Dourges M-A, Bourrat X, Pailler R, Naslain R, Babot O, Birot M, Pillot J-P (2005) Carbon 43:2277

    Article  CAS  Google Scholar 

  4. Cheng XL, Zha QF, Li XJ, Yang XJ (2008) Fuel Process Technol 89:1436

    Article  CAS  Google Scholar 

  5. Mira LK, Dubravka U (1993) Carbon 31:383

    Article  Google Scholar 

  6. Jiang W, Tran T, Song X, Kinoshita K (2000) J Power Sources 85:261

    Article  CAS  Google Scholar 

  7. Heintz EA (1995) Carbon 33:817

    Article  CAS  Google Scholar 

  8. Panaitescu C, Predeanu G (2007) Int J Coal Geol 71:448

    Article  CAS  Google Scholar 

  9. Krebs V, Elalaoui M, Mareche JF, Furdin G, Bertau R (1995) Carbon 33:645

    Article  CAS  Google Scholar 

  10. Elalaoui M, Krebs V, Mareche JF, Furdin G, Bertau R (1995) Carbon 33:653

    Article  CAS  Google Scholar 

  11. Boset S, Bragg RH (1981) Carbon 19:289

    Article  Google Scholar 

  12. Mehrotra B, Bragg RH, Rao AS (1983) J Mater Sci 18:2671. doi:10.1007/BF00547583

    Article  CAS  Google Scholar 

  13. Bhatia G, Aggarwal RK, Malik M, Bahl OP (1984) J Mater Sci 19:1022. doi:10.1007/BF00540472

    Article  CAS  Google Scholar 

  14. Bragg RH, Bose S (1979) 14th biennial carbon conference. The Pennsylvania State University, University Park, State College, p 139 (American Carbon Society, The Pennsylvania State University, University Park, 1979)

  15. Kelly BT, Taylor RB (1973) In: Walker PL (ed) Chemistry and physics of carbon. Marcel Dekker, Inc., New York, p 26

  16. Kobayashi K, Sugawara S, Toyoda S, Honda H (1968) Carbon 6:359

    Article  CAS  Google Scholar 

  17. Otani S, Oya A (1971) Tanso 64:10

    Article  Google Scholar 

  18. Kasahara N, Shiraishi S, Oya A (2002) Carbon 41:1654

    Article  Google Scholar 

  19. Okabe K, Shiraishi S, Oya A (2004) Carbon 42:667

    Article  CAS  Google Scholar 

  20. Kamiya K, Suzuki K (1975) Carbon 13:317

    Article  CAS  Google Scholar 

  21. Ruan XQ, Wang SZ, Zheng JM, Cao TY, Liu WC (1996) Chin J Appl Chem 13:98

    CAS  Google Scholar 

  22. Iwashita N, Park CR, Fujimoto H, Shiraishi M, Inagaki M (2004) Carbon 42:701

    Article  CAS  Google Scholar 

  23. Greene ML, Schwartz RW, Trelezven JW (2002) Carbon 40:1217

    Article  CAS  Google Scholar 

  24. Rogers DK, Jones SP, Fain CC, Edie DD (1993) Carbon 31:303

    Article  CAS  Google Scholar 

  25. Watt W, Moreton R, Johnson DJ (1967) Nature 22:690

    Google Scholar 

  26. Pesin LA (2002) J Mater Sci 37:1. doi:10.1023/A:1013100920130

    Article  CAS  Google Scholar 

  27. Fitzer E, Manocha LM (1998) Carbon reinforcements and carbon/carbon composites. Springer, Berlin, p 24

    Book  Google Scholar 

  28. Jenkins GM, Kawamura K, Ban LL (1972) Proc Rov Soc A 327:501

    Article  Google Scholar 

  29. Shiraishi M (ed) (1996) Kaitei Tansoziryo Nyumon. Carbon Society of Japan, Tokyo, p 9

Download references

Acknowledgements

This study is supported by the National Basic Research Program of China (973 Program) No.2011CB605802. All authors are very grateful to them.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jincai Zhang or Jingli Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Shi, J., Zhao, Y. et al. Structural changes in four different precursors with heat treatment at high temperature and resin carbon structural model. J Mater Sci 47, 5891–5899 (2012). https://doi.org/10.1007/s10853-012-6492-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6492-1

Keywords

Navigation