Skip to main content
Log in

Linear optical susceptibilities of the oxoborate (Pb3O)2(BO3)2WO4: theory and experiment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The optical susceptibilities have been investigated experimentally and theoretically for a newly synthesized oxoborate, (Pb3O)2(BO3)2WO4. The crystal structure is composed of one-dimensional \( {}_{\infty }^{1} \left[ {{\text{Pb}}_{ 3} {\text{O}}} \right]^{ 4+ } \) chains formed by corner-sharing OPb4 tetrahedra. BO3 and WO4 groups are located around the chains to hold them together via Pb–O bonds. The solid-state fluorescence spectrum exhibited a maximum emission peak at around 375.2 nm with excitation light of 280 nm. UV–Vis diffuse reflectance spectra showed a band gap of about 2.9 eV which compares well with our theoretical band gap of about 2.3 eV obtained using the local density approximation and 2.6 eV using the Engel–Vosko’s generalized gradient approximation. We have optimized the atomic positions starting from our X-ray diffraction data so as to minimize the forces on each atom. A remarkable finding is that this crystal possesses a weak anisotropy among three components of the frequency-dependent dielectric function and a small positive birefringence. This indicates that the oxoborate, (Pb3O)2(BO3)2WO4, cannot be used to produce second harmonic generation (SHG) and optical parametric oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Martynyuk-Lototska I, Dudok T, Mys O, Vlokh R (2009) Opt Mater 31:660

    Article  CAS  Google Scholar 

  2. Park H, Lam R, Greedan JE, Barbier J (2003) Chem Mater 15:1703

    Article  CAS  Google Scholar 

  3. Park H-S, Barbier J, Hammond RP (2003) Solid State Sci 5:565

    Article  CAS  Google Scholar 

  4. Park H, Barbier J (2001) Acta Crystallogr E 57:82

    Article  Google Scholar 

  5. Chen X, Zuo J, Chang X, Zhao Y, Zang H, Xiao W (2006) J Solid State Chem 179:3191

    Article  CAS  Google Scholar 

  6. Pan S-L, Smit JP, Marvel MR, Stern CL, Watkins B, Poeppelmeier KR (2006) Mater Res Bull 41:916

    Article  CAS  Google Scholar 

  7. Chen X-A, Zhao Y-H, Chang X-A, Zhang L, Xue HP (2006) Acta Crystallogr C 62:i11

    Article  Google Scholar 

  8. Chen X, Song F, Chang X, Zang H, Xiao W (2009) J Solid State Chem 182:3091

    Article  CAS  Google Scholar 

  9. Li J, Pan S, Zhao W, Tian X, Han J, Fan X (2011) Solid State Sci 13:966

    Article  CAS  Google Scholar 

  10. Ebothe J, Kityk IV, Kisilewski J, Lukasiewicz T, Diduszko R, Majchrowski A (2006) Appl Phys Lett 89:131106

    Article  Google Scholar 

  11. Wojciechowski A, Ozga K, Majchrowski A, Brik MG, Swirkowicz M, Slezak A, Kityk IV (2010) J Modern Optics 57:657

    Article  CAS  Google Scholar 

  12. Sheldrick GM (1997) SHELX-97: program for structure refinement. University of Goettingen, Goettingen

    Google Scholar 

  13. Reshak AH, Chen X, Auluck S, Kamarudin H (private communication)

  14. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2K, an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz Techn Universitat, Wien, Austria. ISBN 3-9501031-1-2

  15. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  16. Ceperley DM, Ader BI (1980) Phys Rev Lett 45:566

    Article  CAS  Google Scholar 

  17. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  18. Engel E, Vosko SH (1993) Phys Rev B 47:13164

    Article  CAS  Google Scholar 

  19. Rashkeev SN, Lambrecht WRL (2001) Phys Rev B 63:165212

    Article  Google Scholar 

  20. Rashkeev SN, Lambrecht WRL (2000) Appl Phys Lett 77:190

    Article  CAS  Google Scholar 

  21. Thongtem T, Phuruangrat A, Thongtem S (2008) Appl Surf Sci 254:7581

    Article  CAS  Google Scholar 

  22. Bassani F, Parravicini GP (1975) Electronic states and optical transitions in solids. Pergamon Press Ltd., Oxford, p 149

    Google Scholar 

  23. Wooten F (1972) Optical properties of solids. Academic Press, New York

    Google Scholar 

  24. Reshak AH (2005) Ph.D. thesis, Indian Institute of Technology-Roorkee, India

Download references

Acknowledgements

For Ali H. Reshak, this study was supported under the program RDI of the Czech Republic, the project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the Grant no. 152/2010/Z of the Grant Agency of the University of South Bohemia. School of Material Engineering, Malaysia University of Perlis, P.O. Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis, Malaysia. For X. Chen, the study was supported under the National Natural Science Foundation of China (Grant no. 20871012). SA would like to thank the National Physical Laboratory for the award of the J C Bose Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hussain Reshak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reshak, A.H., Chen, X., Auluck, S. et al. Linear optical susceptibilities of the oxoborate (Pb3O)2(BO3)2WO4: theory and experiment. J Mater Sci 47, 5794–5800 (2012). https://doi.org/10.1007/s10853-012-6476-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6476-1

Keywords

Navigation