Skip to main content
Log in

Pressure-less spark plasma sintering effect on non-conventional necking process during the initial stage of sintering of copper and alumina

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, we focus on the characterization of the necking mechanisms during the early stages of pressure-less spark plasma sintering (PL-SPS) compared to conventional sintering (CS) of two different types of powdered materials (Cu and α-Al2O3). SEM observations of the evolution of particle morphology and necks from the as-received powders to sintered ones show the nature of the neck between particles which were either in contact or not. For alumina, no particular necking process (melt or viscous bridge) was observed regardless of the sintering conditions (PL-SPS and CS), even for a very high heating rate 455 °C/min. For copper, this neck morphology is unequivocally not typical of conventional ones, thus, suggesting mass transport by an ejection mechanism. This particular morphology was seen occasionally. In comparison, the conventionally sintered Cu particles presented a smoother surface, with conventional curved necks suggesting the contribution of surface diffusion mechanisms. Based on partial pressure calculations, a direct thermal effect might not explain the observed non-conventional neck for copper. On the other hand, local field enhancement effect and local favourable thermal breakdown voltage conditions are described and discussed in order to support the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang ZH, Wang FC, Wang L, Li S-K (2008) Mater Sci Eng A 476:201

    Article  Google Scholar 

  2. Shen Z, Johnsson M, Zhao Z, Nygren M (2002) J Am Ceram Soc 85:1921

    Article  CAS  Google Scholar 

  3. Riello P, Bucella S, Zamengo L, Anselmi-Tamburini U, Francini R, Pietrantoni S, Munir ZA (2006) J Eur Ceram Soc 26:3301

    Article  CAS  Google Scholar 

  4. Gu YW, Loh NH, Khor KA, Tor SB, Cheang P (2002) Biomaterials 23:37

    Article  CAS  Google Scholar 

  5. Omori M (2000) Mater Sci Eng A 287:183

    Article  Google Scholar 

  6. Grasso S, Sakka Y, Maizza G (2009) Sci Technol Adv Mater 10:053001

    Article  Google Scholar 

  7. Mondalek P, Silva L, Durand L, Belleta M (2010) AIP Conf Proc 1252:697

    Article  CAS  Google Scholar 

  8. Vanmeensel K, Laptev A, Hennicke J, Vleugels J, Van der Biest O (2005) Acta Mater 53:4379

    Article  CAS  Google Scholar 

  9. Groza JR, Zavaliangos A (2000) Mater Sci Eng A 287:171

    Article  Google Scholar 

  10. Carney CM, Mah TI (2008) J Am Ceram Soc 91:3448

    Article  CAS  Google Scholar 

  11. Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763. doi:10.1007/s10853-006-6555-2

    Article  CAS  Google Scholar 

  12. Chaim RJ (2006) J Mater Sci 41:7862. doi:10.1007/s10853-006-0605-7

    Article  CAS  Google Scholar 

  13. Olevsky E, Froyen L (2009) J Am Ceram Soc 92:S122

    Article  CAS  Google Scholar 

  14. Hulbert DM, Anders A, Dudina D, Andersson J, Jiang D, Unuvar C, Anselmi-Tamburini U, Lavernia EJ, Mukherjee AK (2008) J Appl Phys 104:033305

    Article  Google Scholar 

  15. Langer J, Hoffmann MJ, Guillon O (2009) Acta Mater 57:5454

    Article  CAS  Google Scholar 

  16. Kun W, Zhengyi F, Weimin W, Yucheng W, Jinyong Z, Qingjie Z (2007) J Mater Sci 42:302. doi:10.1007/s10853-006-1013-8

    Article  Google Scholar 

  17. Zhaohui Z, Fuchi W, Lin W, Shukui L, Osamu S (2008) Mater Lett 62:3987

    Article  Google Scholar 

  18. Song X, Liu X, Zhang J (2006) J Am Ceram Soc 89:494

    Article  CAS  Google Scholar 

  19. Demirskyi D, Borodianska H, Agrawal D, Ragulya A, Sakka Y, Vasylkiv O (2012) J Alloys Compd 523:1

    Article  CAS  Google Scholar 

  20. Chaim R (2007) Mater Sci Eng A 443:25

    Article  Google Scholar 

  21. Aman Y, Garnier V, Djurado E (2011) J Am Ceram Soc 94:2825

    Article  CAS  Google Scholar 

  22. Gephart S, Singh J, Kulkarni A (2011) J Mater Sci 46:3659. doi:10.1007/s10853-011-5283-4

    Article  CAS  Google Scholar 

  23. Kang S-JL (2005) Sintering, 1st edn. Elsevier, Oxford

    Google Scholar 

  24. Frei JM, Anselmi-Tamburini U, Munir ZA (2007) J Appl Phys 101:114914

    Article  Google Scholar 

  25. Raouafi F, Barreteau C, Desjonquères MC, Spanjaard D (2002) Surf Sci 505:183

    Article  CAS  Google Scholar 

  26. Kumeda K, Nakamura Y, Takata A, Ishizaki K (1999) J Ceram Soc Jpn 107:187

    Article  CAS  Google Scholar 

  27. Stanciu L, Quach D, Faconti C, Groza JR, Raether F (2007) J Am Ceram Soc 90:2716

    Article  CAS  Google Scholar 

  28. Alcock CB, Itkin VP, Horrigan MK (1984) Can Metall Q 23:309

    Article  CAS  Google Scholar 

  29. Geiger F, Busse CA, Loehrke RI (1987) Int J Thermophys 8:425

    Article  CAS  Google Scholar 

  30. Brewer L, Searcy AW (1951) J Am Chem Soc 73:5308

    Article  CAS  Google Scholar 

  31. Lou VKL, Mitchell TE, Heuer AH (1985) J Am Ceram Soc 68:49

    Article  CAS  Google Scholar 

  32. Levi G, Kaplan WD (2002) Acta Mater 50:75

    Article  CAS  Google Scholar 

  33. Ho Oh S, Chisholm MF, Kauffmann Y, Kaplan WD, Luo W, Rühle M, Scheu C (2010) Science 330:489

    Article  Google Scholar 

  34. Lekner J (2010) J Electrostatics 68:299

    Article  Google Scholar 

  35. Paschen F (1889) Ann Phys 273:69

    Article  Google Scholar 

  36. Dhariwal RS, Torres JM, Desmulliez MPY (2000) IEE Proc 147:261

    Google Scholar 

  37. Slade PG, Taylor ED (2002) IEEE Trans Compon Packag Technol 25:390

    Article  Google Scholar 

  38. Tirumala R, Go DB (2010) Appl Phys Lett 97:151502

    Article  Google Scholar 

  39. Radmilović-Radjenović M, Radjenović B (2008) Plasma Sources Sci Technol 17:024005

    Article  Google Scholar 

  40. Go DB, Pohlman DA (2010) J Appl Phys 107:103303

    Article  Google Scholar 

  41. Richardson OW (1901) Proc Camb Phil Soc 11:286

    Google Scholar 

  42. Brandes EA, Brook GB (eds) (1992) Smithells metals reference book, 7th edn. Butterworth-Heinemann Ltd., Bodmin

  43. Timko H, Djurabekova F, Nordlund K, Costelle L, Matyash K, Schneider R, Toerklep A, Arnau-Izquierdo G, Descoeudres A, Calatroni S, Taborelli M, Wuensch W (2010) Phys Rev B 81:184109

    Article  Google Scholar 

  44. Cordier A, Kleitz M, Steil MC (2012) J Eur Ceram Soc doi:10.1016/j.jeurceramsoc.2011.12.022

  45. Demirskyi D, Borodianska H, Grasso S, Sakka Y, Vasylkiv O (2011) Scripta Mat 65:683

    Article  CAS  Google Scholar 

  46. Holland TB, Thron AM, Bonifacio CS, Mukherjee AK, van Benthem K (2010) Appl Phys Lett 96:243106

    Article  Google Scholar 

  47. Toyofuku N, Kuramoto T, Imai T, Ohyanagi M, Munir ZA (2012) J Mater Sci 47:2201. doi:10.1007/s10853-011-6026-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support received from ‘Région Rhône Alpes—MACODEV’ for this study (M. Yann Aman thesis), Pr. G. Fantozzi and G. Bonnefont from the SPS consortium at INSA Lyon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Garnier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aman, Y., Garnier, V. & Djurado, E. Pressure-less spark plasma sintering effect on non-conventional necking process during the initial stage of sintering of copper and alumina. J Mater Sci 47, 5766–5773 (2012). https://doi.org/10.1007/s10853-012-6469-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6469-0

Keywords

Navigation