Skip to main content
Log in

A blend of first-principles and kinetic lattice Monte Carlo computation to optimize samarium-doped ceria

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solid oxide fuel cells (SOFCs) have been acknowledged as a possible future source for clean and efficient electric power generation. One of the most important goals in the SOFCs research is to decrease the operating temperature, which in turn will improve the stability and decrease the cost of various components enabling its widespread utilization. For realizing the aforementioned goal, it is imperative to identify suitable electrolyte materials that show enhanced conductivity in the intermediate temperature range (773–1,073 K). Sm-doped ceria (SDC) is considered a promising candidate for use as an electrolyte material for SOFC operation in intermediate temperature range due to the high oxygen ion conductivity. In this article, we present a theoretical investigation using first-principles and kinetic lattice Monte Carlo (KLMC) computations to highlight the trends in oxygen ion conductivity as a function of dopant content and temperature in SDC. Using first-principles calculations, oxygen vacancy formation and migration were examined at first, second, and third nearest neighbor positions to a Sm ion. The activation energies for oxygen vacancy migration along various pathways in SDC computed using first-principles were used as input to the KLMC model to study vacancy mediated diffusion. SDC with 20 % mole fraction of dopant content yields the maximum conductivity, which is in very good agreement with experimentally identified compositions. Rationale for increase in conductivity as a function of increase in dopant content and subsequent decrease in conductivity at higher dopant fractions in SDC is presented. This combined methodology of first-principles and KLMC computations is a useful tool for the design and identification of various ceria-based electrolyte materials used in SOFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Nature 414:345

    Article  CAS  Google Scholar 

  2. Inaba H, Tagawa G (1996) Solid State Ion 83:1

    Article  CAS  Google Scholar 

  3. Trovarelli A (2002) Catalytic science series 2: catalysis by ceria and related materials. Imperial College Press, London

    Google Scholar 

  4. Mogensen M, Sammes NM, Tompsett GA (2000) Solid State Ion 129:63

    Article  CAS  Google Scholar 

  5. Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M (2000) Science 288:2031

    Article  CAS  Google Scholar 

  6. Balazs GB, Glass RS (1995) Solid State Ion 76:155

    Article  Google Scholar 

  7. Yahiro H, Eguchi K, Arai H (1989) Solid State Ion 36:71

    Article  CAS  Google Scholar 

  8. Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Solid State Ion 52:165

    Article  CAS  Google Scholar 

  9. Yamashita K, Ramanujachary KV, Greenblatt M (1995) Solid State Ion 81:53

    Article  CAS  Google Scholar 

  10. Kuharuangrong S (2007) J Power Sources 171:506

    Article  CAS  Google Scholar 

  11. Yahiro H, Eguchi Y, Eguchi K, Arai H (1989) J Appl Electrochem 18:527

    Article  Google Scholar 

  12. Kim DJ (1989) J Am Ceram Soc 72:1415

    Article  CAS  Google Scholar 

  13. Dholabhai PP, Adams JB, Crozier P, Sharma R (2010) Phys Chem Chem Phys 12:7904

    Article  CAS  Google Scholar 

  14. Dholabhai PP, Adams JB, Crozier P, Sharma R (2010) J Chem Phys 132:094104

    Article  Google Scholar 

  15. Fu YP, Wen SW, Lu CH (2008) J Am Ceram Soc 91:127

    Article  CAS  Google Scholar 

  16. Zha S, Xia C, Meng G (2003) J Power Sources 115:44

    Article  CAS  Google Scholar 

  17. Huang W, Shuk P, Greenblatt M (1997) Solid State Ion 100:23

    Article  CAS  Google Scholar 

  18. Souza ECC, Muccillo ENS (2009) ECS Trans 25:1643

    Article  CAS  Google Scholar 

  19. Ou DR, Mori T, Ye F, Zou J, Auchterlonie G, Drennan J (2008) Phys Rev B 77:024108

    Article  Google Scholar 

  20. Wei X, Pan W, Cheng L, Li B (2009) Solid State Ion 180:13

    Article  CAS  Google Scholar 

  21. Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2006) Proc Natl Acad Sci 103:3518

    Article  CAS  Google Scholar 

  22. Nakayama M, Martin M (2009) Phys Chem Chem Phys 11:3241

    Article  CAS  Google Scholar 

  23. Ismail A, Hooper J, Giorgi JB, Woo TK (2011) Phys Chem Chem Phys 13:6116

    Article  CAS  Google Scholar 

  24. Hooper J, Ismail A, Giorgi JB, Woo TK (2010) Phys Rev B 81:224104

    Article  Google Scholar 

  25. Hooper J, Ismail A, Giorgi JB, Woo TK (2010) Phys Chem Chem Phys 12:12969

    Article  CAS  Google Scholar 

  26. Dholabhai PP, Anwar S, Adams JB, Crozier P, Sharma R (2011) J Solid State Chem 184:811

    Article  CAS  Google Scholar 

  27. Dholabhai PP, Anwar S, Adams JB, Crozier PA, Sharma R (2012) Model Simul Mater Sci Eng 20:015004

    Google Scholar 

  28. Hohenberg P, Kohn W (1994) Phys Rev 136:B864

    Article  Google Scholar 

  29. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  31. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505

    Article  CAS  Google Scholar 

  32. Bhochl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  33. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  34. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  35. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  36. Hellmann H (1937) An introduction to quantum chemistry. Deuticke, Leipzig

    Google Scholar 

  37. Feynman RP (1939) Phys Rev 56:340

    Article  CAS  Google Scholar 

  38. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  39. Yang Z, Woo TK, Hermansson K (2006) J Chem Phys 124:224704

    Article  Google Scholar 

  40. Jiang Y, Adams JB, Schilfgaarde MV, Sharma R, Crozier PA (2005) Appl Phys Lett 87:141917

    Article  Google Scholar 

  41. Yang Z, Luo G, Lu Z, Woo TK, Hermansson K (2008) J Phys Condens Matter 20:035210

    Article  Google Scholar 

  42. Yang Z, Luo G, Lu Z, Hermansson K (2007) J Chem Phys 127:074704

    Article  Google Scholar 

  43. Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Phys Rev Lett 89:166601

    Article  CAS  Google Scholar 

  44. Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2007) Appl Phys Lett 90:031909

    Article  Google Scholar 

  45. Shimojo F, Okazaki H (1992) J Phys Soc Jpn 61:4106

    Article  CAS  Google Scholar 

  46. Yashima M, Kobayashi S, Yasui T (2007) Faraday Discuss 134:369

    Article  CAS  Google Scholar 

  47. Steele BCH (2000) Solid State Ion 129:95

    Article  CAS  Google Scholar 

  48. Dudek M, Rapacz-Kmita A, Mroczkowska M, Mosiałek M, Mordarski G (2010) Electrochim Acta 55:4387

    Article  CAS  Google Scholar 

  49. Li B, Wei X, Pan W (2010) Inter J Hydro Energy 35:3018

    Article  CAS  Google Scholar 

  50. Ji Y, Liu J, He T, Wang J, Su W (2005) J Alloys Compd 389:317

    Article  CAS  Google Scholar 

  51. Omar S, Wachsman ED, Nino JC (2008) Solid State Ion 178:1890

    Article  CAS  Google Scholar 

  52. Wang FY, Chen S, Cheng S (2004) Electrochem Comm 6:743

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is based upon the work supported by the Department of Energy under the Grant No. DE-PS02-06ER06-17. The authors gratefully acknowledge the Fulton High Performance Computing Initiative (HPCI) at the Arizona State University for the computational resources. P.P.D thanks Shahriar Anwar, Peter A. Crozier and Renu Sharma for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik P. Dholabhai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dholabhai, P.P., Adams, J.B. A blend of first-principles and kinetic lattice Monte Carlo computation to optimize samarium-doped ceria. J Mater Sci 47, 7530–7541 (2012). https://doi.org/10.1007/s10853-012-6398-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6398-y

Keywords

Navigation