Skip to main content
Log in

Improved UV resistance in wood through the hydrothermal growth of highly ordered ZnO nanorod arrays

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, wood materials with significantly improved UV resistance were successfully fabricated by growing highly ordered ZnO nanorod arrays on wood surfaces using a facile one-pot hydrothermal method. The resultant samples were characterized via scanning electron microscopy (SEM), X-ray diffraction, and attenuated total reflectance-Fourier transformation infrared (ATR–FTIR) techniques. The SEM images clearly show the highly ordered and well-aligned ZnO nanorod arrays directly grown onto the wood surface. ATR–FTIR spectra demonstrate that stable chemical bonds between the hydroxyl groups of the ZnO nanorod array film and the wood surface were formed at the interface of the two materials. An accelerated aging test was used to measure the UV resistance of the original wood and the ZnO/wood composite. The experimental results indicate that the ZnO/wood samples exhibited a more superior UV resistance than the original wood. This significantly improved UV resistance is mainly attributed to the excellent UV absorption of the well-aligned ZnO nanorod arrays grown on the wood surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andrady AL, Hamid SH, Hu X, Torikai A (1998) J Photoch Photobio B 46:96

    Article  CAS  Google Scholar 

  2. Hon DNS, Shiraishi N (2001) Wood and cellulosic chemistry. Marcel Dekker, New York

    Google Scholar 

  3. Pandey KK (2005) Poly Degrad Stab 90:9

    Article  CAS  Google Scholar 

  4. Kuo M, Hu N (1991) Holzforschung 45:347

    Article  CAS  Google Scholar 

  5. Müller U, Rätzsch M, Schwanninger M, Steiner M, Zöbl H (2003) J Photoch Photobio B 69:97

    Article  Google Scholar 

  6. Ncube E, Meincken M (2010) Appl Surf Sci 256:7504

    Article  CAS  Google Scholar 

  7. Nzokou P, Kamdem DP, Temiz A (2011) Prog Org Coat 71:350

    Article  CAS  Google Scholar 

  8. Zahri S, Belloncle C, Charrier F, Pardon P, Quideau S, Charrier B (2007) Appl Surf Sci 253:4985

    Article  CAS  Google Scholar 

  9. Bryne LE, Wålinder MEP (2010) Holzforschung 64:295

    Article  CAS  Google Scholar 

  10. Evans PD, Wallis AFA, Owen NL (2000) Wood Sci Technol 34:151

    Article  CAS  Google Scholar 

  11. Evans PD, Michell AJ, Schmalzl KJ (1992) Wood Sci Technol 26:151

    Article  CAS  Google Scholar 

  12. Prakash GK, Mahadevan KM (2008) Appl Surf Sci 254:1751

    Article  CAS  Google Scholar 

  13. Yu Y, Jiang Z, Wang G, Song Y (2010) Holzforschung 64:385

    Article  CAS  Google Scholar 

  14. Chen X, Mao S (2007) Chem Rev 107:2891

    Article  CAS  Google Scholar 

  15. Huang M, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1897

    Article  CAS  Google Scholar 

  16. Dev A, Niepelt R, Richters JP, Ronning C, Voss T (2010) Nanotechnology 21:065709

    Article  CAS  Google Scholar 

  17. Lin C, Chiou B, Chang C, Lin J (2003) Mater Chem Phys 77:647

    Article  CAS  Google Scholar 

  18. Wu J, Xie C, Bai Z, Zhu B, Huang K, Wu R (2002) Mater Sci Eng B 95:157

    Article  Google Scholar 

  19. Xu J, Shun A, Pan Q, Qin J (2000) Sens Act B 66:161

    Article  Google Scholar 

  20. Tigges B, Möller M, Weichold O (2010) J Colloid Interface Sci 345:41

    Article  CAS  Google Scholar 

  21. Zhang L, Li F, Chen Y, Wang X (2011) J Lumin 131:1701

    Article  CAS  Google Scholar 

  22. Ye S, Zhang D, Liu H, Zhou J (2011) J Appl Polym Sci 121:1757

    Article  CAS  Google Scholar 

  23. John A, Ko HU, Kim DG, Kim J (2011) Cellulose 18:675

    Article  CAS  Google Scholar 

  24. Wang HJ, Zakirov A, Yuldashev SU, Lee J, Fu DJ, Kang T (2011) Mater Lett 65:1316

    Article  CAS  Google Scholar 

  25. Goncalves G, Marques PAAP, Neto CP, Trindade T, Peres M, Monteiro T (2009) Cryst Growth Des 9:386

    Article  CAS  Google Scholar 

  26. Xu B, Cai Z, Wang W, Ge F (2010) Surf Coat Tech 204:1556

    Article  CAS  Google Scholar 

  27. Tshabalala MA, Kingshott P, VanLandingham MR, Plackett D (2003) J Appl Polym Sci 88:2828

    Article  CAS  Google Scholar 

  28. Schmalzl KJ, Evans PD (2003) Polym Degrad Stab 82:409

    Article  CAS  Google Scholar 

  29. Rassam G, Abdi Y, Abdi A (2011) J Exp Nanosci. doi:10.1080/17458080.2010.538086

  30. Lam YL, Kan CW, Yuen CWM (2011) Cellulose 18:151

    Article  CAS  Google Scholar 

  31. Sun Q, Yu H, Liu Y, Li J, Lu Y, Hunt JF (2010) Holzforschung 64:757

    Article  CAS  Google Scholar 

  32. Li J, Yu H, Sun Q, Liu Y, Cui Y, Lu Y (2010) Appl Surf Sci 256:5046

    Article  CAS  Google Scholar 

  33. Sun Q, Yu H, Liu Y, Li J, Cui Y, Lu Y (2010) J Mater Sci 45:6661. doi:10.1007/s10853-010-4758-z

    Article  CAS  Google Scholar 

  34. Sun Q, Lu Y, Liu Y (2011) J Mater Sci 46:7706. doi:10.1007/s10853-011-5750-y

    Article  CAS  Google Scholar 

  35. Borysiak S, Doczekalska B (2005) Fibres Text East Eur 13:87

    CAS  Google Scholar 

  36. Kumar M, Gupta RC, Sharma T (1993) J Mater Sci 28:805. doi:10.1007/BF01151261

    Article  CAS  Google Scholar 

  37. Chen S-W, Wu J-M (2011) Acta Mate 59:841

    Article  CAS  Google Scholar 

  38. Guo M, Diao P, Cai S (2007) Thin Solid Films 515:7162

    Article  CAS  Google Scholar 

  39. Park JH, Muralidharan P, Kim DK (2009) Mater Lett 63:1019

    Article  CAS  Google Scholar 

  40. Tao Y, Fu M, Zhao A, He D, Wang Y (2010) J Alloy Compd 489:99

    Article  CAS  Google Scholar 

  41. Xu B, Cai Z (2008) Appl Surf Sci 254:5899

    Article  CAS  Google Scholar 

  42. Musić S, Popović S, Maljković M, Dragčević Đ (2002) J Alloy Compd 347:324

    Article  Google Scholar 

  43. Pandey KK (1999) J Appl Polym Sci 71:1969

    Article  CAS  Google Scholar 

  44. Kubela H, Pizzia A (1981) J Wood Chem Technol 1:75

    Article  Google Scholar 

  45. Li W, Shi E, Zhong W, Yin Z (1999) J Cryst Growth 203:186

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the Breeding Plan of Excellent Doctoral Dissertation of Northeast Forestry University (GRAP09), the Programme of Introducing Talents of Discipline to Universities of China (B08016), the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (Jilin University) Open Research Fund (2011-29), the Building Program for Engineering Technology Research Center in Liaoning Province Science and Technology Agency (2009402007), and the Program for Innovative Research Team in Liaoning Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q., Lu, Y., Zhang, H. et al. Improved UV resistance in wood through the hydrothermal growth of highly ordered ZnO nanorod arrays. J Mater Sci 47, 4457–4462 (2012). https://doi.org/10.1007/s10853-012-6304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6304-7

Keywords

Navigation