Skip to main content
Log in

Effect of the KMnO4 concentration on the structure and electrochemical behavior of MnO2

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Various MnO2 structures have been synthesized in this study by a facile method through the manipulation of KMnO4 concentration. The effect of KMnO4 concentration on the structure and morphology has been thoroughly investigated by X-ray powder diffraction, field-emission scanning electron microscopy, and nitrogen adsorption–desorption measurements. Birnessite-type MnO2 flower-like microsphere can be obtained at a lower concentration, while α-MnO2 nanorods can be obtained at a higher concentration. By increasing the KMnO4 concentration further, α-MnO2 nanorods can assemble into urchin-like microspheres and spherical aggregates. The possible formation mechanism based on the experimental results has been proposed to understand their growth procedures. The electrochemical properties of the synthesized materials evaluated by cyclic voltammetry and constant-current charge–discharge cycling techniques are dependent on their pore size distribution and nanostructures. Birnessite-type MnO2 microsphere showed excellent capacitive behavior with a maximum specific capacitance of 185 F g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kanjwal MA, Baralat NAM, Sheikh FA, Khil MS, Kim HY (2008) J Mater Sci 43:5489

    Article  CAS  Google Scholar 

  2. Luo J, Zhang Q, Martinez JG, Suib SL (2008) J Am Chem Soc 130:3198

    Article  CAS  Google Scholar 

  3. Tian ZR, Tong W, Wang JY, Duan NG, Krishnan VV, Suib SL (1997) Science 276:926

    Article  CAS  Google Scholar 

  4. Fei JB, Cui Y, Yan XH, Qi W, Yang Y, Wang KW, He Q, Li JB (2008) Adv Mater 20:452

    Article  Google Scholar 

  5. Zeng JH, Wang YF, Yang Y, Zhang J (2010) J Mater Chem 20:10915

    Article  CAS  Google Scholar 

  6. Hou Y, Cheng Y, Hobson T, Liu J (2010) Nano Lett 10:2727

    Article  CAS  Google Scholar 

  7. Ge J, Zhuo L, Yang F, Tang B, Wu L, Tung C (2006) J Phys Chem B 110:17854

    Article  CAS  Google Scholar 

  8. Muraoka Y, Chiba H, Atou T, Kikuchi M, Hiraga K, Syono Y, Sugiyama S, Yamamoto S, Grenier JC (1999) J Solid State Chem 144:136

    Article  CAS  Google Scholar 

  9. Zhu HT, Luo J, Yang HX, Liang JK, Rao GH, Li JB, Du ZM (2008) J Phys Chem C 112:17089

    Article  CAS  Google Scholar 

  10. Ai Z, Zhang L, Kong F, Liu H, Xing W, Qiu J (2008) Mater Chem Phys 111:162

    Article  CAS  Google Scholar 

  11. Wang HE, Qian D (2008) Mater Chem Phys 109:399

    Article  CAS  Google Scholar 

  12. Oaki Y, Imai H (2007) Angew Chem Int Ed 46:4951

    Article  CAS  Google Scholar 

  13. Li G, Jiang L, Pang H, Peng H (2007) Mater Lett 61:3319

    Article  CAS  Google Scholar 

  14. Hong XL, Zhang GY, Zhu YY, Yang HQ (2003) Mater Res Bull 38:1695

    Article  CAS  Google Scholar 

  15. Reddy RN, Reddy RG (2004) J Power Sources 132:315

    Article  CAS  Google Scholar 

  16. Yang SX, Yang HY, Ma HY, Guo S, Cao F, Gong J, Deng YL (2011) Chem Commun 47:2619

    Article  CAS  Google Scholar 

  17. Feng ZP, Li GR, Zhong JH, Wang ZL, Ou YN, Tong YX (2009) Electrochem Commun 11:706

    Article  CAS  Google Scholar 

  18. Wang N, Cao X, He L, Zhang W, Guo L, Chen CP, Wang RM, Yang SH (2008) J Phys Chem C 112:365

    Article  CAS  Google Scholar 

  19. Cheng FY, Zhao JZ, Song W, Li CS, Ma H, Chen J, Shen PW (2006) Inorg Chem 45:2038

    Article  CAS  Google Scholar 

  20. Chen Y, Hong YZ, Ma YP, Li JB (2010) J Alloys Compd 490:331

    Article  CAS  Google Scholar 

  21. Wu CZ, Xie Y, Wang D, Yang J, Li TW (2003) J Phys Chem B 107:13583

    Article  CAS  Google Scholar 

  22. Zhang X, Chang XP, Chen N, Wang K, Kang LP, Liu ZH (2011) J Mater Sci. doi:10.1007/s10853-011-5879-8

  23. Yue GH, Yan PX, Yan D, Qu DM, Fan XY, Wang MX, Shang HT (2006) J Cryst Growth 294:385

    Article  CAS  Google Scholar 

  24. Zheng DS, Yin ZL, Zhang WM, Tan XJ, Sun SX (2006) Cryst Growth Des 6:1733

    Article  CAS  Google Scholar 

  25. Yang ZH, Zhou CX, Zhang WX, Li HY, Chen M (2010) Colloids Surf A 356:134

    Article  CAS  Google Scholar 

  26. Hill LI, Verbaere A, Guyomard D (2003) J Power Sources 119–121:226

    Article  Google Scholar 

  27. Tang X, Liu Z, Zhang C, Yang Z, Wang Z (2009) J Power Sources 193:939

    Article  CAS  Google Scholar 

  28. Chen HM, He JH (2008) J Phys Chem C 112:17540

    Article  CAS  Google Scholar 

  29. Wang HQ, Yang GF, Li QY, Zhong XX, Wang FP, Li ZS, Li YH (2011) New J Chem 35:469

    Article  CAS  Google Scholar 

  30. AL-Sagheer FA, Zaki MI (2000) Colloids Surf A 173:193

    Article  CAS  Google Scholar 

  31. Zhao LL, Wang RS (2004) Appl Surf Sci 236:217

    Article  CAS  Google Scholar 

  32. Portehault D, Cassaignon S, Nassif N, Baudrin E, Jolivet JP (2008) Angew Chem Int Ed 47:6441

    Article  CAS  Google Scholar 

  33. Li YD, Li XL, He RR, Zhu J, Deng ZX (2002) J Am Chem Soc 124:1411

    Article  CAS  Google Scholar 

  34. Li YD, Li XL, Deng ZX, Zhou BC, Fan SS, Wang JW, Sun XM (2002) Angew Chem Int Ed 41:333

    Article  CAS  Google Scholar 

  35. Xiao W, Wang D, Lou XW (2010) J Phys Chem C 114:1694

    Article  CAS  Google Scholar 

  36. Yuan CZ, Gao B, Su LH, Zhang XG (2008) J Colloid Interface Sci 322:545

    Article  CAS  Google Scholar 

  37. Yan J, Wei T, Cheng J, Fan Z, Zhang M (2010) Mater Res Bull 45:210

    Article  CAS  Google Scholar 

  38. Yang XH, Wang YG, Xiong HM, Xia YY (2007) Electrochim Acta 53:752

    Article  CAS  Google Scholar 

  39. Reddy RN, Reddy RG (2003) J Power Sources 124:330

    Article  CAS  Google Scholar 

  40. Yan J, Fan ZJ, Wei T, Zhang ML (2010) J Mater Sci Mater Electron 21:619

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 20977024)m and the Natural Science Foundation of Hebei Province (No. B2009000258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zichuan Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, R., Xing, S., Ma, Z. et al. Effect of the KMnO4 concentration on the structure and electrochemical behavior of MnO2 . J Mater Sci 47, 3822–3827 (2012). https://doi.org/10.1007/s10853-011-6237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6237-6

Keywords

Navigation