Skip to main content
Log in

Preparation, surface properties, and MC3T3-E1 cell response of mesoporous hydroxyapatite thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mesoporous hydroxyapatite (meso-HA) thin films were fabricated by a sol–gel method using cetyltrimethyl ammonium bromide as the template. The phase, surface morphology, and mesoporous structure of the meso-HA films were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The uniform thin films consisted of meso-HA spherical particles with different pore size (2.0 or 3.1 nm) were prepared on the glass substrate at different pH value (pH 3.0 or 7.0). The introduction of mesopores would enhance the surface area of HA. Water contact angle was also measured on the non-mesoporous and meso-HA thin films, revealing the promotion of surface wettability in the mesoporous ones. In vitro cytocompatibility of HA films were evaluated by cell adhesion and proliferation tests using MC3T3-E1 cells. After 3 days of culture on the samples, the cells spread in an elongated shape and were well adhered to the surface of the meso-HA films. Moreover, the cells proliferation on the meso-HA films was higher than that on the non-mesoporous films. There are significant differences in the cell density between the control group and the meso-HA films with the pores sized in 2.0 nm after being cultured for 2 and 3 days (P < 0.05). The results suggested that the presence of mesopores could influence the surface and biological properties of HA films, and the mesoporous structure would enhance the cell response of HA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang HL, Zhai LF, Li YH, Shi TJ (2008) Mater Res Bull 43:1607

    Article  CAS  Google Scholar 

  2. Lopez-Heredia MA, Weiss P, Layrolle P (2007) J Mater Sci Mater Med 18:381

    Article  CAS  Google Scholar 

  3. Ribeiro AA, Marques RFC, Guastaldi AC, Campos JSD (2009) J Mater Sci 44:4056. doi:10.1007/s10853-009-3585-6

    Article  CAS  Google Scholar 

  4. Hsu HC, Wu SC, Fu CL, Ho WF (2010) J Mater Sci 45:3661. doi:10.1007/s10853-010-4411-x

    Article  CAS  Google Scholar 

  5. Xiong JY, Li YC, Hodgson PD, Wen CE (2010) J Biomed Mater Res A 95A:766

    Article  CAS  Google Scholar 

  6. Höhr D, Steinfartz Y, Schins RPF, Knaapen AM, Martra G, Fubini B et al (2002) Int J Hyg Environ Health 205:239

    Article  Google Scholar 

  7. Emadi R, Tavangarian F, Esfahani SIR, Sheikhhosseini A, Kharaziha M (2010) J Am Ceram Soc 93(9):2679

    Article  CAS  Google Scholar 

  8. Park JW, Kim YJ, Jang JH, Kwon TG, Bae YC, Suh JY (2010) Acta Biomater 6:1661

    Article  CAS  Google Scholar 

  9. Patel S, Kurpinski K, Quigley R, Gao HF, Hsiao BS, Poo MM et al (2007) Nano Lett 7(7):2122

    Article  CAS  Google Scholar 

  10. Loo SCJ, Moore T, Banik B, Alexis F (2010) Curr Pharm Biotechnol 11:333

    Article  CAS  Google Scholar 

  11. Ochsenbein A, Chai F, Winter S, Traisnel M, Breme J, Hildebrand HF (2008) Acta Biomater 4:1506

    Article  CAS  Google Scholar 

  12. Yang PP, Quan ZW, Li CX, Kang XJ, Lian HZ, Lin J (2008) Biomaterials 29:4341

    Article  CAS  Google Scholar 

  13. Sepulveda P, Jones JR, Hench LL (2002) J Biomed Mater Res 59:340

    Article  CAS  Google Scholar 

  14. Huang W, Liu W, She Z, Wu H, Shi X (2011) Appl Surf Sci 257:9757

    Article  CAS  Google Scholar 

  15. Zhao YF, Ma J (2005) Micropor Mesopor Mater 87:110

    Article  CAS  Google Scholar 

  16. Shum HC, Bandyopadhyay A, Bose S, Weitz DA (2009) Chem Mater 21:5548

    Article  CAS  Google Scholar 

  17. Tsui YC, Doyle C, Clyne TW (1998) Biomaterials 19:2015

    Article  CAS  Google Scholar 

  18. Liu DM, Yang QZ, Troczynski T (2002) Biomaterials 23:691

    Article  CAS  Google Scholar 

  19. Kim HW, Knowles JC, Salih V, Kim HE (2004) J Biomed Mater Res B 71B:66

    Article  CAS  Google Scholar 

  20. Yao J, Tjandra W, Chen YZ, Tam KC, Ma J, Soh B (2003) J Mater Chem 13:3053

    Article  CAS  Google Scholar 

  21. Huo Q, Margolese DI, Ciesla U, Demuth DG, Feng PY, Gier TE et al (1994) Chem Mater 6(8):1176

    Article  CAS  Google Scholar 

  22. Wang LZ, Yu J, Shi JL, Yan DS (1999) J Chin Ceram Soc 27(1):22

    CAS  Google Scholar 

  23. Yu X, Cai S, Zhang Z, Xu G (2008) Mater Sci Eng C 28:1138

    Article  CAS  Google Scholar 

  24. Liu DM, Troczynski T, Tseng WJ (2002) Biomaterials 23:1227

    Article  CAS  Google Scholar 

  25. Carta D, Knowles JC, Smith ME, Newport RJ (2007) J Non-Cryst Solids 353:1141

    Article  CAS  Google Scholar 

  26. Eshtiagh-Hosseini H, Housaindokht MR, Chahkandi M (2007) Mater Chem Phys 106:310

    Article  CAS  Google Scholar 

  27. Song L, Zhu D, Sun X, Wang S, Sun D (2009) Acta Chim Sin 67:2697

    CAS  Google Scholar 

  28. Wang F, Li MS, Lu YP, Qi YX (2005) Mater Lett 59:916

    Article  CAS  Google Scholar 

  29. Hou G, Jin Z, Zheng X, Qian J (2007) Rare Metal Mater Eng 36:1649

    CAS  Google Scholar 

  30. Natarajan UV, Rajeswari S (2008) J Cryst Growth 310:4601

    Article  Google Scholar 

  31. Arima Y, Iwata H (2007) Biomaterials 28:3074

    Article  CAS  Google Scholar 

  32. Park JH, Schwartz Z, Olivares-Navarrete R, Boyan BD, Tannenbaum R (2011) Langmuir 27:5976

    Article  CAS  Google Scholar 

  33. Shen QH, Li S, Zong JJ, Yang H (2010) J Chin Ceram Soc 38(1):158

    CAS  Google Scholar 

  34. Kastena P, Luginbühl R, van Griensven M, Barkhausen T, Krettek C, Bohner M et al (2003) Biomaterials 24:2593

    Article  Google Scholar 

  35. Shin JH, Lee JW, Jung JH, Cho DW, Lim G (2011) J Mater Sci 46:5282. doi:10.1007/s10853-011-5467-y

    Article  CAS  Google Scholar 

  36. Li Y, Bao XX, Matsuda N, Yao JM, Teramoto A, Abe K et al (2011) J Mater Sci 46:1396. doi:10.1007/s10853-010-4933-2

    Article  CAS  Google Scholar 

  37. Li JN, Cao P, Zhang XN, Zhang SX, He YH (2010) J Mater Sci 45:6038. doi:10.1007/s10853-010-4688-9

    Article  CAS  Google Scholar 

  38. Fu H, Rahaman MN, Day DE, Brown RF (2011) J Mater Sci Mater Med 22:579

    Article  CAS  Google Scholar 

  39. Zhou H, Wu X, Wei J, Lu X, Zhang S, Shi J et al (2011) J Mater Sci Mater Med 22:731

    Article  CAS  Google Scholar 

  40. Zhang ZX, Sun JY, Hu HJ, Wang QM, Liu XY (2011) J Biomed Mater Res B 97B:224

    Article  CAS  Google Scholar 

  41. Dolatshahi-Pirouz A, Jensen THL, Kolind K, Bünger C, Kassem M, Foss M et al (2011) Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces. Colloids Surf B. doi:10.1016/j.colsurfb.2010.12.004

  42. Gelb H, Schumacher HR, Cuckler J, Baker DG (1994) J Orthop Res 12:83

    Article  CAS  Google Scholar 

  43. Lee HU, Jeong YS, Park SY, Jeong SY, Kim HG, Cho CR (2009) Curr Appl Phys 9:528

    Article  Google Scholar 

Download references

Acknowledgement

Authors acknowledge the financial support by National Nature Science Foundation of China (Grant Nos. 50772072, 51072129) and Natural Science Foundation of Tianjin (Grant No. 11 JCYBJC02600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, X., Xu, G., Cai, S. et al. Preparation, surface properties, and MC3T3-E1 cell response of mesoporous hydroxyapatite thin films. J Mater Sci 47, 3763–3769 (2012). https://doi.org/10.1007/s10853-011-6227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6227-8

Keywords

Navigation