Skip to main content
Log in

Characterization of conductive composite films based on TEMPO-oxidized cellulose nanofibers and polypyrrole

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, conductive composite films based on TEMPO-oxidized cellulose nanofibers (TOCN) and polypyrrole (PPy) were synthesized in situ by a Chemical Polymerization Induced Adsorption Process of pyrrole on the surface of TOCN in aqueous medium. Resulting composite films were investigated by X-ray photoelectron spectroscopy, scanning, and transmission electron microscopy, N2 gas adsorption analysis, thermogravimetric analysis, mechanical tests, and conductivity measurements in the ambient air. Our results showed a stable, flexible, and highly electrically conductive composite film in which PPy nanoparticles coated the surface of the TOCN network. In addition, the advantage in using the famous material, TOCN, is clearly due to the presence of carboxylate (COOH/COONa+) and hydroxyl (OH) moieties on the surface of TOCN. These reactive moieties could enhance the adsorption process of positively charged PPy backbone during polymerization. TEM observations demonstrated the formation of a PPy coat along the surface of the cellulose nanofibers having a diameter of about 90 nm which is relatively higher compared to the initial diameter of pure TOCN (~9 nm). Despite the physical and chemical treatment of TOCN during polymerization, the micrometric length of the cellulosic nanomaterial was maintained. In addition, the incorporation of polyvinyl alcohol as an additive in the TOCN/PPy composite seems to enhance the flexibility of composite films (bent up to 180°) without losing the high electrical conductivity. Finally, because of the high conductivity and good mechanical properties of the TOCN/PPy composite films obtained in this work, they can be used as a promising material in applications of sensors, flexible electrodes, and other fields requiring electrically conductive flexible films.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Krings LHM, Havinga EE, Donkers MJJ, Vork FTA (1993) Synth Met 54:453

    Article  CAS  Google Scholar 

  2. Ge H, Teasdale PR, Wallace GG (1991) J Chromatogr 544:305

    Article  CAS  Google Scholar 

  3. Nishide H, Oyaizu K (2008) Science 319:737

    Article  CAS  Google Scholar 

  4. Lenz DM, Delamar M, Ferreira CA (2003) J Electroanal Chem 540:35

    Article  CAS  Google Scholar 

  5. Ghanbari K, Bathaie KSZ, Mousavi MF (2008) Biosens Bioelectron 23:1825

    Article  CAS  Google Scholar 

  6. Lopez-Crapez E, Livache T, Marchand J, Grenier J (2000) Science 290:1540

    Article  Google Scholar 

  7. Ateh DD, Navsaria HA, Vadgama P (2006) J R Soc Interface 3:741

    Article  CAS  Google Scholar 

  8. Mirmohseni A, Price WE, Wallace GG, Zhao H (1993) J Intell Mater Syst Struct 4:43

    Article  Google Scholar 

  9. Zoppi RA, Felisberti MI, De Paoli MA (1994) J Polym Sci Polym Chem 32:1001

    CAS  Google Scholar 

  10. Molina J, del Rio AI, Bonastre J, Cases F (2009) Eur Polym J 45:1302

    Article  CAS  Google Scholar 

  11. Cucchi I, Boschi A, Arosio C, Bertini F, Freddi G, Catellani M (2009) Synth Met 159:246

    Article  CAS  Google Scholar 

  12. Dall’Acqua L, Tonin C, Varesano A, Canetti M, Porzio W, Catellani M (2006) Synth Met 156:379

    Article  Google Scholar 

  13. Beneventi D, Alila S, Boufi S, Chaussy D, Nortier P (2006) Cellulose 13:725

    Article  CAS  Google Scholar 

  14. Muller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Synth Met 161:106

    Article  Google Scholar 

  15. Huang J, Ichinose I, Kunitake T (2005) Chem Commun (13):1717

  16. Onar N, Akşit AC, Ebeoglugil MF, Birlik I, Celik E, Ozdemir I (2009) J Appl Polym Sci 114:2003

    Article  CAS  Google Scholar 

  17. Ehrenbeck C, Jüttner K, Ludwig S, Paasch G (1998) Electrochim Acta 43:2781

    Article  CAS  Google Scholar 

  18. Osaka T, Naoi K, Ogano S (1988) J Electrochem Soc 135:1071

    Article  CAS  Google Scholar 

  19. Vidal JC, García E, Castillo JR (1999) Anal Chim Acta 385:213

    Article  CAS  Google Scholar 

  20. Lekpittaya P, Yanumet N, Grady BP, O’Rear EA (2004) J Appl Polym Sci 92:2629

    Article  CAS  Google Scholar 

  21. Kim J, Yun S, Ounaies Z (2006) Macromolecules 39:4202

    Article  CAS  Google Scholar 

  22. Marchessault RH, Morehead FF, Walter NM (1959) Nature 184:632

    Article  CAS  Google Scholar 

  23. Abe K, Iwamoto S, Yano H (2007) Biomacromolecules 8:3276

    Article  CAS  Google Scholar 

  24. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Biomacromolecules 8:1934

    Article  CAS  Google Scholar 

  25. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) Biomacromolecules 9:57

    Article  CAS  Google Scholar 

  26. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Biomacromolecules 7:1687

    Article  CAS  Google Scholar 

  27. Mishra SP, Thirree J, Manent AS, Chabot B, Daneault C (2011) BioResources 6(1):121

    CAS  Google Scholar 

  28. Okita Y, Saito T, Isogai A (2010) Biomacromolecules 11:1696

    Article  CAS  Google Scholar 

  29. Mihranyan A, Nyholm L, Garcia-Bennett AE, Strømme M (2008) J Phys Chem 12:12249

    Google Scholar 

  30. Perruchot C, Chehimi MM, Delamar M, Lascelles SF, Armes SP (1996) Langmuir 12:3245

    Article  CAS  Google Scholar 

  31. Malitesta C, Losito I, Sabbatini L, Zambonin PG (1995) J Electron Spectros Relat Phenom 76(29):629

    Article  CAS  Google Scholar 

  32. Suzer S, Birer O, Sevil UA, Guven O (1998) Turk J Chem 22(1):59

    CAS  Google Scholar 

  33. Gelin K, Mihranyan A, Razaq A, Nyholm L, Strømme M (2009) Electrochim Acta 54:3394

    Article  CAS  Google Scholar 

  34. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  35. Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antônio RV, Porto LM (2008) Mater Sci Eng C 28:549

    Article  CAS  Google Scholar 

  36. Carrasco PM, Cortazar M, Ochoteco E, Calahorra E, Pomposo JA (2007) Surf Interface Anal 39:26

    Article  CAS  Google Scholar 

  37. Yang C, Liu P (2009) Ind Eng Chem Res 48:9498

    Article  CAS  Google Scholar 

  38. Hu W, Chen S, Yang Z, Liu L, Wang H (2011) J Phys Chem B 115:8453

    Article  CAS  Google Scholar 

  39. Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm ML, Strømme M (2010) J Phys Chem B 114:4178

    Article  Google Scholar 

  40. Liu W, Ashok L, Lynne S (1999) J Am Chem Soc 121:11345

    Article  CAS  Google Scholar 

  41. Tarazona P, Marini Bettolo Marconi U, Evans R (1987) Mol Phys 60:573

    Article  CAS  Google Scholar 

  42. Lastoskie C, Gubbins KE, Quirke N (1993) Langmuir 9:2693

    Article  CAS  Google Scholar 

  43. Johnston JH, Moraes J, Borrmann T (2005) Synth Met 153:65

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Natural Science and Engineering Research Council of Canada (NSERC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Jradi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jradi, K., Bideau, B., Chabot, B. et al. Characterization of conductive composite films based on TEMPO-oxidized cellulose nanofibers and polypyrrole. J Mater Sci 47, 3752–3762 (2012). https://doi.org/10.1007/s10853-011-6226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6226-9

Keywords

Navigation